Submission #849616

# Submission time Handle Problem Language Result Execution time Memory
849616 2023-09-15T06:46:21 Z skittles1412 Closing Time (IOI23_closing) C++17
83 / 100
1000 ms 139364 KB
#include "bits/extc++.h"

using namespace std;

template <typename T, typename... U>
void dbgh(const T& t, const U&... u) {
    cerr << t;
    ((cerr << " | " << u), ...);
    cerr << endl;
}

#ifdef DEBUG
#define dbg(...)                                           \
    cerr << "L" << __LINE__ << " [" << #__VA_ARGS__ << "]" \
         << ": ";                                          \
    dbgh(__VA_ARGS__)
#else
#define cerr   \
    if (false) \
    cerr
#define dbg(...)
#endif

using ll = long long;
using u64 = uint64_t;

#define endl "\n"
#define long int64_t
#define sz(x) int(std::size(x))

template <typename T>
ostream& operator<<(ostream& out, const vector<T>& arr) {
    out << "[";
    for (int i = 0; i < sz(arr); i++) {
        if (i) {
            out << ", ";
        }
        out << arr[i];
    }
    return out << "]";
}

template <typename Cb>
struct Cmp {
    Cb cb;

    Cmp(Cb cb) : cb(cb) {}

    template <typename T>
    bool operator()(const T& a, const T& b) const {
        return cb(a) < cb(b);
    }
};

vector<vector<pair<int, long>>> edges_to_adj(
    int n,
    const vector<tuple<int, int, long>>& edges) {
    vector<vector<pair<int, long>>> graph(n);

    for (auto& [u, v, w] : edges) {
        graph[u].emplace_back(v, w);
        graph[v].emplace_back(u, w);
    }

    return graph;
}

struct DistDFS {
    vector<long> dist;
    vector<vector<pair<int, long>>> graph;

    DistDFS(int root, int n, const vector<tuple<int, int, long>>& edges)
        : dist(n), graph(edges_to_adj(n, edges)) {
        dfs(root, -1, 0);
    }

    void dfs(int u, int p, long d) {
        dist[u] = d;

        for (auto& [v, w] : graph[u]) {
            if (v == p) {
                continue;
            }

            dfs(v, u, d + w);
        }
    }
};

struct PathDFS {
    int n;
    vector<int> path;
    vector<char> on_path;
    vector<vector<int>> path_subs;
    vector<vector<pair<int, long>>> graph;

    PathDFS(int u0, int u1, int n, const vector<tuple<int, int, long>>& edges)
        : n(n), on_path(n), graph(edges_to_adj(n, edges)) {
        pdfs(u0, -1, u1);

        for (auto& a : path) {
            on_path[a] = true;
        }

        for (auto& a : path) {
            path_subs.emplace_back();
            dfs(a, -1, path_subs.back());
        }
    }

    vector<int> st;

    void pdfs(int u, int p, int targ) {
        st.push_back(u);

        if (u == targ) {
            path = st;
        }

        for (auto& [v, _w] : graph[u]) {
            if (v == p) {
                continue;
            }

            pdfs(v, u, targ);
        }

        st.pop_back();
    }

    void dfs(int u, int p, vector<int>& out) {
        out.push_back(u);

        for (auto& [v, _w] : graph[u]) {
            if (v == p || on_path[v]) {
                continue;
            }

            dfs(v, u, out);
        }
    }
};

template <typename T>
vector<int> coord_comp(const vector<T>& arr) {
    vector<pair<T, int>> v;
    for (int i = 0; i < sz(arr); i++) {
        v.emplace_back(arr[i], i);
    }
    sort(begin(v), end(v));

    vector<int> comp(sz(arr));
    for (int i = 0; i < sz(v); i++) {
        comp[v[i].second] = i;
    }

    return comp;
}

struct MArr {
    vector<long> vals;
    vector<int> comp;

    MArr(const vector<long>& vals) : vals(vals), comp(coord_comp(vals)) {}
};

struct Node {
    long sum, last0, last1;
    int cnt;

    Node operator+(const Node& n) const {
        if (n.last1 == -1) {
            return {sum + n.sum, last0, last1, cnt + n.cnt};
        } else if (n.last0 == -1) {
            return {sum + n.sum, last1, n.last1, cnt + n.cnt};
        } else {
            return {sum + n.sum, n.last0, n.last1, cnt + n.cnt};
        }
    }

    Node operator-(const Node& n) const {
        return {sum - n.sum, -1, -1, cnt - n.cnt};
    }

    static Node c_from(long x) {
        return {x, -1, x, 1};
    }

    static constexpr Node c_def() {
        return {0, -1, -1, 0};
    }
};

template <typename T>
constexpr T default_value() {
    return {};
}

template <>
constexpr Node default_value<Node>() {
    return Node::c_def();
}

template <typename T>
struct ST {
    int n;
    vector<T> v;

    ST(int _n) : n(1 << (__lg(_n) + 1)), v(2 * n, default_value<T>()) {}

    T query_point(int ind) const {
        return v[ind + n];
    }

    void update(int ind, const T& x) {
        ind += n;
        v[ind] = x;
        ind >>= 1;
        for (; ind; ind >>= 1) {
            v[ind] = v[ind * 2] + v[ind * 2 + 1];
        }
    }

    T query_pref(int ind) const {
        if (ind < 0) {
            return default_value<T>();
        } else if (ind >= n - 1) {
            return v[1];
        }

        T ans = default_value<T>();

        ind += n + 1;
        for (; ind > 1; ind >>= 1) {
            if (ind & 1) {
                ans = v[ind ^ 1] + ans;
            }
        }
        return ans;
    }

    T query_all() const {
        return v[1];
    }

    template <typename Cb>
    pair<int, T> bsearch(int o, int l, int r, const T& pref, const Cb& cb)
        const {
        if (l == r) {
            return {l - 1, pref};
        }

        int mid = (l + r) / 2, lc = o * 2, rc = lc + 1;
        if (!cb(pref + v[lc])) {
            return bsearch(lc, l, mid, pref, cb);
        } else {
            return bsearch(rc, mid + 1, r, pref + v[lc], cb);
        }
    }

    template <typename Cb>
    pair<int, T> bsearch(const Cb& cb) const {
        if (cb(v[1])) {
            return {n, v[1]};
        }
        return bsearch(1, 0, n - 1, default_value<T>(), cb);
    }
};

struct VEB {
    static constexpr int MAXD = 3, MAXN = 1 << (6 * MAXD);

    u64 v[MAXD][MAXN >> 6] {};

    void toggle(int ind) {
        auto set = [&](u64& mask, int bit, bool b) -> void {
            if (b) {
                mask |= u64(1) << bit;
            } else {
                mask &= ~(u64(1) << bit);
            }
        };

        v[MAXD - 1][ind >> 6] ^= u64(1) << (ind & 63);
        ind >>= 6;

        for (int i = MAXD - 2; i >= 0; i--) {
            set(v[i][ind >> 6], ind & 63, !!v[i + 1][ind]);
            ind >>= 6;
        }
    }

    optional<int> query_pred(int ind) {
        if (ind <= 0) {
            return {};
        }
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] & ((u64(1) << (ind & 63)) - 1);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | int(__lg(cur));
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | int(__lg(v[j][ind]));
            }
            return ind;
        }
        return {};
    }

    optional<int> query_succ(int ind) {
        for (int i = MAXD - 1; i >= 0; i--) {
            u64 cur = v[i][ind >> 6] >> 1 >> (ind & 63);
            if (!cur) {
                ind >>= 6;
                continue;
            }

            ind = (ind & (~63)) | (__builtin_ctzll(cur) + (ind & 63) + 1);
            for (int j = i + 1; j < MAXD; j++) {
                ind = (ind << 6) | __builtin_ctzll(v[j][ind]);
            }
            return ind;
        }
        return {};
    }
};

struct DS {
    int n;
    MArr arr[2];
    ST<Node> v_st[2];
    ST<long> v_stl;
    VEB v_inds[2];
    vector<int> comp, ord0;

    DS(const vector<long>& v0, const vector<long>& v1)
        : n(sz(v0)), arr {v0, v1}, v_st {n, n}, v_stl(2 * n) {
        vector<long> vals;
        vals.insert(vals.end(), begin(v0), end(v0));
        for (auto& a : v1) {
            vals.push_back(2 * a);
        }

        comp = coord_comp(vals);

        vector<int> ord(2 * n);
        for (int i = 0; i < 2 * n; i++) {
            ord[comp[i]] = i;
        }

        int last0 = -1;
        for (auto& a : ord) {
            if (a < n) {
                last0 = arr[0].comp[a];
            }
            ord0.push_back(last0);
        }
    }

    template <int IND>
    void insert(int x) {
        if constexpr (!IND) {
            v_inds[IND].toggle(arr[IND].comp[x]);
        }
        v_st[IND].update(arr[IND].comp[x], Node::c_from(arr[IND].vals[x]));
        int ox = x + IND * n;
        v_stl.update(comp[ox], arr[IND].vals[x]);
    }

    template <int IND>
    void erase(int x) {
        if constexpr (!IND) {
            v_inds[IND].toggle(arr[IND].comp[x]);
        }
        v_st[IND].update(arr[IND].comp[x], Node::c_def());
        int ox = x + IND * n;
        v_stl.update(comp[ox], 0);
    }

    int query(long kv) {
        int ans = -1e9;

        auto upd_ans_q0_q1 = [&](const Node& q0, const Node& q1) -> void {
            if (q0.sum + q1.sum <= kv) {
                ans = max(ans, q0.cnt * 2 + q1.cnt);
            }
        };
        auto upd_ans_q0 = [&](const Node& q0) -> void {
            auto q1 = v_st[1]
                          .bsearch([&](const Node& o) -> bool {
                              return q0.sum + o.sum <= kv;
                          })
                          .second;

            upd_ans_q0_q1(q0, q1);
        };

        int l1 = ({
            int l = -1, r = v_st[0].n;

            while (r - l > 1) {
                int mid = (l + r) / 2;

                auto q0 = v_st[0].query_pref(mid);
                auto q1 = v_st[1]
                              .bsearch([&](const Node& o) -> bool {
                                  return q0.sum + o.sum <= kv;
                              })
                              .second;

                if (q0.sum + q1.sum <= kv && q1.last1 * 2 > q0.last1) {
                    l = mid;
                } else {
                    r = mid;
                }
            }
            l;
        });
        int l = ({
            int ind =
                v_stl.bsearch([&](long x) -> bool { return x <= kv; }).first;

            int l;
            if (ind < 0) {
                l = -1;
            } else if (ind >= 2 * n) {
                l = n;
            } else {
                l = ord0[ind];
            }

            long l_pref = v_stl.query_pref(ind),
                 l_sum = v_st[0].query_pref(l).sum,
                 l1_sum = v_st[0].query_pref(l1).sum;
            dbg(ind, l, l_pref, l_sum, l1_sum, kv);
            if (l_pref < l_sum) {
                vector<int> ord(30);
                for (int i = 0; i < n; i++) {
                    ord[arr[0].comp[i]] = i;
                }
                for (int i = 0; i < 15; i++) {
                    dbg(v_st[0].query_point(i).sum,
                        v_stl.query_point(comp[ord[i]]), comp[ord[i]]);
                }
                assert(false);
            }
            l;
        });

        Node last_q0 = v_st[0].query_pref(l);

        upd_ans_q0(last_q0);
        upd_ans_q0(Node::c_def());
        {
            auto [u, q0] = v_st[0].bsearch(
                [&](const Node& o) -> bool { return o.sum <= kv; });
            upd_ans_q0(q0);
            if (u - 1 >= 0) {
                upd_ans_q0(q0 - v_st[0].query_point(u - 1));
            }
        }
        {
            auto [u, q0] = v_st[0].bsearch([&](const Node& o) -> bool {
                return o.sum <= kv - v_st[1].query_all().sum;
            });
            upd_ans_q0(q0);
            if (u + 1 < v_st[0].n) {
                upd_ans_q0(q0 + v_st[0].query_point(u + 1));
            }
        }

        {
            int u = l;
            Node q0 = last_q0;

            for (int it = 0; it < 2; it++) {
                auto n_u = v_inds[0].query_succ(u);
                if (!n_u) {
                    break;
                }

                u = n_u.value();
                q0 = q0 + v_st[0].query_point(u);
                upd_ans_q0(q0);
            }
        }
        {
            int u = l;
            Node q0 = last_q0;

            for (int it = 0; it < 2; it++) {
                auto n_u = v_inds[0].query_pred(u);
                if (!n_u) {
                    break;
                }

                u = n_u.value();
                q0 = q0 - v_st[0].query_point(u);
                upd_ans_q0(q0);
            }
        }

        return ans;
    }
};

int solve_disjoint(long kv,
                   const vector<long>& dist0,
                   const vector<long>& dist1) {
    vector<long> dists;
    dists.insert(dists.end(), begin(dist0), end(dist0));
    dists.insert(dists.end(), begin(dist1), end(dist1));

    sort(begin(dists), end(dists));

    long sum = 0;
    int i;
    for (i = 0; i < sz(dists); i++) {
        sum += dists[i];
        if (sum > kv) {
            break;
        }
    }

    return i;
}

int solve(int n, int u0, int u1, long kv, vector<tuple<int, int, long>> edges) {
    auto dist0 = DistDFS(u0, n, edges).dist, dist1 = DistDFS(u1, n, edges).dist;
    auto path_dfs = PathDFS(u0, u1, n, edges);
    auto path = path_dfs.path_subs;
    int m = sz(path);

    vector<long> cost1(n), cost2(n), delta(n);

    for (int i = 0; i < n; i++) {
        cost1[i] = min(dist0[i], dist1[i]);
        cost2[i] = max(dist0[i], dist1[i]);
        delta[i] = cost2[i] - cost1[i];
    }

    map<long, vector<int>> mp;

    for (int i = 0; i < m; i++) {
        mp[delta[path[i][0]]].push_back(i);
    }

    DS ds(cost2, cost1);

    int ans = solve_disjoint(kv, dist0, dist1);
    dbg(ans);

    int ans_add = 0;
    long min_cost = 0;
    for (auto& a : path_dfs.path) {
        ans_add++;
        min_cost += cost1[a];
    }

    auto move_vals = [&](vector<int> nodes, bool undo) -> void {
        sort(begin(nodes), end(nodes),
             Cmp([&](int u) -> long { return cost1[u]; }));

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add++;
                min_cost += delta[u];
            } else {
                ds.erase<1>(u);
                ds.insert<0>(u);
            }

            ans = max(ans, ans_add + ds.query(kv - min_cost));
            dbg(ans, ans_add, min_cost);
        }

        if (!undo) {
            return;
        }

        for (auto& u : nodes) {
            if (path_dfs.on_path[u]) {
                ans_add--;
                min_cost -= delta[u];
            } else {
                ds.insert<1>(u);
                ds.erase<0>(u);
            }
        }
    };

    for (int i = 0; i < n; i++) {
        if (path_dfs.on_path[i]) {
            continue;
        }
        ds.insert<1>(i);
    }

    for (auto& [_k, vals] : mp) {
        dbg(vals);
        if (sz(vals) == 1) {
            move_vals(path[vals[0]], false);
            continue;
        }

        assert(sz(vals) == 2);
        dbg(ans_add, min_cost);
        move_vals(path[vals[0]], true);
        dbg(ans_add, min_cost);
        move_vals(path[vals[1]], false);
        move_vals(path[vals[0]], false);
    }

    return ans;
}

int max_score(int n,
              int u0,
              int u1,
              ll kv,
              vector<int> edges_u,
              vector<int> edges_v,
              vector<int> edges_w) {
    vector<tuple<int, int, long>> edges;

    for (int i = 0; i < n - 1; i++) {
        edges.emplace_back(edges_u[i], edges_v[i], edges_w[i]);
    }

    return solve(n, u0, u1, kv, edges);
}

Compilation message

closing.cpp: In member function 'int DS::query(int64_t)':
closing.cpp:437:18: warning: unused variable 'l1_sum' [-Wunused-variable]
  437 |                  l1_sum = v_st[0].query_pref(l1).sum;
      |                  ^~~~~~
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 596 ms 117584 KB Output is correct
2 Correct 594 ms 139364 KB Output is correct
3 Correct 274 ms 3668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 0 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 0 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 1 ms 600 KB Output is correct
19 Correct 2 ms 604 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 1 ms 856 KB Output is correct
22 Correct 2 ms 856 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 0 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 1 ms 600 KB Output is correct
7 Correct 1 ms 604 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 0 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 1 ms 600 KB Output is correct
15 Correct 1 ms 604 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 1 ms 604 KB Output is correct
18 Correct 1 ms 600 KB Output is correct
19 Correct 2 ms 604 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 1 ms 856 KB Output is correct
22 Correct 2 ms 856 KB Output is correct
23 Correct 1 ms 860 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 5 ms 600 KB Output is correct
26 Correct 11 ms 2004 KB Output is correct
27 Correct 8 ms 2040 KB Output is correct
28 Correct 7 ms 2808 KB Output is correct
29 Correct 5 ms 2528 KB Output is correct
30 Correct 6 ms 2044 KB Output is correct
31 Correct 5 ms 2772 KB Output is correct
32 Correct 6 ms 2772 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 0 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 600 KB Output is correct
9 Correct 0 ms 604 KB Output is correct
10 Correct 0 ms 604 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 1 ms 600 KB Output is correct
13 Correct 1 ms 604 KB Output is correct
14 Correct 0 ms 600 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 600 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 600 KB Output is correct
19 Correct 0 ms 600 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 0 ms 600 KB Output is correct
22 Correct 0 ms 600 KB Output is correct
23 Correct 0 ms 600 KB Output is correct
24 Correct 0 ms 856 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 0 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 0 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 1 ms 600 KB Output is correct
21 Correct 0 ms 604 KB Output is correct
22 Correct 0 ms 604 KB Output is correct
23 Correct 1 ms 600 KB Output is correct
24 Correct 1 ms 600 KB Output is correct
25 Correct 1 ms 604 KB Output is correct
26 Correct 0 ms 600 KB Output is correct
27 Correct 1 ms 600 KB Output is correct
28 Correct 1 ms 600 KB Output is correct
29 Correct 1 ms 600 KB Output is correct
30 Correct 1 ms 600 KB Output is correct
31 Correct 0 ms 600 KB Output is correct
32 Correct 1 ms 600 KB Output is correct
33 Correct 0 ms 600 KB Output is correct
34 Correct 0 ms 600 KB Output is correct
35 Correct 0 ms 600 KB Output is correct
36 Correct 0 ms 856 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 600 KB Output is correct
41 Correct 1 ms 600 KB Output is correct
42 Correct 1 ms 600 KB Output is correct
43 Correct 0 ms 600 KB Output is correct
44 Correct 1 ms 604 KB Output is correct
45 Correct 1 ms 600 KB Output is correct
46 Correct 1 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 1 ms 600 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 0 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 0 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 600 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 2 ms 856 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 860 KB Output is correct
26 Correct 1 ms 600 KB Output is correct
27 Correct 1 ms 600 KB Output is correct
28 Correct 0 ms 604 KB Output is correct
29 Correct 0 ms 604 KB Output is correct
30 Correct 1 ms 600 KB Output is correct
31 Correct 1 ms 600 KB Output is correct
32 Correct 1 ms 604 KB Output is correct
33 Correct 0 ms 600 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 1 ms 600 KB Output is correct
37 Correct 1 ms 600 KB Output is correct
38 Correct 0 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 0 ms 600 KB Output is correct
41 Correct 0 ms 600 KB Output is correct
42 Correct 0 ms 600 KB Output is correct
43 Correct 0 ms 856 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 600 KB Output is correct
46 Correct 1 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 1 ms 600 KB Output is correct
49 Correct 1 ms 600 KB Output is correct
50 Correct 0 ms 600 KB Output is correct
51 Correct 1 ms 604 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 600 KB Output is correct
54 Correct 1 ms 600 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 1 ms 600 KB Output is correct
58 Correct 1 ms 600 KB Output is correct
59 Correct 1 ms 600 KB Output is correct
60 Correct 2 ms 600 KB Output is correct
61 Correct 1 ms 600 KB Output is correct
62 Correct 1 ms 600 KB Output is correct
63 Correct 2 ms 600 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 1 ms 600 KB Output is correct
66 Correct 2 ms 600 KB Output is correct
67 Correct 2 ms 600 KB Output is correct
68 Correct 1 ms 856 KB Output is correct
69 Correct 1 ms 856 KB Output is correct
70 Correct 1 ms 856 KB Output is correct
71 Correct 1 ms 856 KB Output is correct
72 Correct 2 ms 600 KB Output is correct
73 Correct 1 ms 600 KB Output is correct
74 Correct 2 ms 600 KB Output is correct
75 Correct 1 ms 600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 0 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 0 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 600 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 2 ms 856 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 860 KB Output is correct
26 Correct 5 ms 600 KB Output is correct
27 Correct 11 ms 2004 KB Output is correct
28 Correct 8 ms 2040 KB Output is correct
29 Correct 7 ms 2808 KB Output is correct
30 Correct 5 ms 2528 KB Output is correct
31 Correct 6 ms 2044 KB Output is correct
32 Correct 5 ms 2772 KB Output is correct
33 Correct 6 ms 2772 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 0 ms 604 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 604 KB Output is correct
41 Correct 0 ms 600 KB Output is correct
42 Correct 1 ms 600 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 600 KB Output is correct
46 Correct 0 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 0 ms 600 KB Output is correct
49 Correct 0 ms 600 KB Output is correct
50 Correct 0 ms 600 KB Output is correct
51 Correct 0 ms 856 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 600 KB Output is correct
54 Correct 1 ms 600 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 1 ms 600 KB Output is correct
58 Correct 0 ms 600 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 600 KB Output is correct
61 Correct 1 ms 600 KB Output is correct
62 Correct 1 ms 600 KB Output is correct
63 Correct 1 ms 600 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 1 ms 600 KB Output is correct
66 Correct 1 ms 600 KB Output is correct
67 Correct 1 ms 600 KB Output is correct
68 Correct 2 ms 600 KB Output is correct
69 Correct 1 ms 600 KB Output is correct
70 Correct 1 ms 600 KB Output is correct
71 Correct 2 ms 600 KB Output is correct
72 Correct 1 ms 600 KB Output is correct
73 Correct 1 ms 600 KB Output is correct
74 Correct 2 ms 600 KB Output is correct
75 Correct 2 ms 600 KB Output is correct
76 Correct 1 ms 856 KB Output is correct
77 Correct 1 ms 856 KB Output is correct
78 Correct 1 ms 856 KB Output is correct
79 Correct 1 ms 856 KB Output is correct
80 Correct 2 ms 600 KB Output is correct
81 Correct 1 ms 600 KB Output is correct
82 Correct 2 ms 600 KB Output is correct
83 Correct 1 ms 600 KB Output is correct
84 Correct 7 ms 600 KB Output is correct
85 Correct 7 ms 600 KB Output is correct
86 Correct 8 ms 600 KB Output is correct
87 Correct 6 ms 604 KB Output is correct
88 Correct 6 ms 600 KB Output is correct
89 Correct 8 ms 2136 KB Output is correct
90 Correct 6 ms 1880 KB Output is correct
91 Correct 9 ms 2136 KB Output is correct
92 Correct 6 ms 2136 KB Output is correct
93 Correct 6 ms 2136 KB Output is correct
94 Correct 7 ms 2392 KB Output is correct
95 Correct 8 ms 2392 KB Output is correct
96 Correct 5 ms 2392 KB Output is correct
97 Correct 6 ms 2140 KB Output is correct
98 Correct 7 ms 2136 KB Output is correct
99 Correct 5 ms 2136 KB Output is correct
100 Correct 7 ms 1880 KB Output is correct
101 Correct 5 ms 860 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 600 KB Output is correct
2 Correct 1 ms 600 KB Output is correct
3 Correct 1 ms 600 KB Output is correct
4 Correct 1 ms 600 KB Output is correct
5 Correct 0 ms 600 KB Output is correct
6 Correct 0 ms 600 KB Output is correct
7 Correct 1 ms 600 KB Output is correct
8 Correct 1 ms 604 KB Output is correct
9 Correct 1 ms 600 KB Output is correct
10 Correct 1 ms 600 KB Output is correct
11 Correct 1 ms 600 KB Output is correct
12 Correct 0 ms 600 KB Output is correct
13 Correct 1 ms 600 KB Output is correct
14 Correct 1 ms 604 KB Output is correct
15 Correct 1 ms 600 KB Output is correct
16 Correct 1 ms 604 KB Output is correct
17 Correct 1 ms 600 KB Output is correct
18 Correct 1 ms 604 KB Output is correct
19 Correct 1 ms 600 KB Output is correct
20 Correct 2 ms 604 KB Output is correct
21 Correct 1 ms 600 KB Output is correct
22 Correct 1 ms 856 KB Output is correct
23 Correct 2 ms 856 KB Output is correct
24 Correct 1 ms 860 KB Output is correct
25 Correct 1 ms 860 KB Output is correct
26 Correct 5 ms 600 KB Output is correct
27 Correct 11 ms 2004 KB Output is correct
28 Correct 8 ms 2040 KB Output is correct
29 Correct 7 ms 2808 KB Output is correct
30 Correct 5 ms 2528 KB Output is correct
31 Correct 6 ms 2044 KB Output is correct
32 Correct 5 ms 2772 KB Output is correct
33 Correct 6 ms 2772 KB Output is correct
34 Correct 1 ms 600 KB Output is correct
35 Correct 1 ms 600 KB Output is correct
36 Correct 0 ms 604 KB Output is correct
37 Correct 0 ms 604 KB Output is correct
38 Correct 1 ms 600 KB Output is correct
39 Correct 1 ms 600 KB Output is correct
40 Correct 1 ms 604 KB Output is correct
41 Correct 0 ms 600 KB Output is correct
42 Correct 1 ms 600 KB Output is correct
43 Correct 1 ms 600 KB Output is correct
44 Correct 1 ms 600 KB Output is correct
45 Correct 1 ms 600 KB Output is correct
46 Correct 0 ms 600 KB Output is correct
47 Correct 1 ms 600 KB Output is correct
48 Correct 0 ms 600 KB Output is correct
49 Correct 0 ms 600 KB Output is correct
50 Correct 0 ms 600 KB Output is correct
51 Correct 0 ms 856 KB Output is correct
52 Correct 1 ms 600 KB Output is correct
53 Correct 1 ms 600 KB Output is correct
54 Correct 1 ms 600 KB Output is correct
55 Correct 1 ms 600 KB Output is correct
56 Correct 1 ms 600 KB Output is correct
57 Correct 1 ms 600 KB Output is correct
58 Correct 0 ms 600 KB Output is correct
59 Correct 1 ms 604 KB Output is correct
60 Correct 1 ms 600 KB Output is correct
61 Correct 1 ms 600 KB Output is correct
62 Correct 1 ms 600 KB Output is correct
63 Correct 1 ms 600 KB Output is correct
64 Correct 1 ms 600 KB Output is correct
65 Correct 1 ms 600 KB Output is correct
66 Correct 1 ms 600 KB Output is correct
67 Correct 1 ms 600 KB Output is correct
68 Correct 2 ms 600 KB Output is correct
69 Correct 1 ms 600 KB Output is correct
70 Correct 1 ms 600 KB Output is correct
71 Correct 2 ms 600 KB Output is correct
72 Correct 1 ms 600 KB Output is correct
73 Correct 1 ms 600 KB Output is correct
74 Correct 2 ms 600 KB Output is correct
75 Correct 2 ms 600 KB Output is correct
76 Correct 1 ms 856 KB Output is correct
77 Correct 1 ms 856 KB Output is correct
78 Correct 1 ms 856 KB Output is correct
79 Correct 1 ms 856 KB Output is correct
80 Correct 2 ms 600 KB Output is correct
81 Correct 1 ms 600 KB Output is correct
82 Correct 2 ms 600 KB Output is correct
83 Correct 1 ms 600 KB Output is correct
84 Correct 7 ms 600 KB Output is correct
85 Correct 7 ms 600 KB Output is correct
86 Correct 8 ms 600 KB Output is correct
87 Correct 6 ms 604 KB Output is correct
88 Correct 6 ms 600 KB Output is correct
89 Correct 8 ms 2136 KB Output is correct
90 Correct 6 ms 1880 KB Output is correct
91 Correct 9 ms 2136 KB Output is correct
92 Correct 6 ms 2136 KB Output is correct
93 Correct 6 ms 2136 KB Output is correct
94 Correct 7 ms 2392 KB Output is correct
95 Correct 8 ms 2392 KB Output is correct
96 Correct 5 ms 2392 KB Output is correct
97 Correct 6 ms 2140 KB Output is correct
98 Correct 7 ms 2136 KB Output is correct
99 Correct 5 ms 2136 KB Output is correct
100 Correct 7 ms 1880 KB Output is correct
101 Correct 5 ms 860 KB Output is correct
102 Correct 376 ms 3408 KB Output is correct
103 Correct 352 ms 3216 KB Output is correct
104 Correct 582 ms 125440 KB Output is correct
105 Correct 488 ms 8580 KB Output is correct
106 Correct 528 ms 5964 KB Output is correct
107 Correct 823 ms 98656 KB Output is correct
108 Correct 289 ms 97404 KB Output is correct
109 Correct 462 ms 134908 KB Output is correct
110 Execution timed out 1057 ms 102632 KB Time limit exceeded
111 Halted 0 ms 0 KB -