Submission #848152

# Submission time Handle Problem Language Result Execution time Memory
848152 2023-09-11T12:49:13 Z ogkostya Beech Tree (IOI23_beechtree) C++17
31 / 100
102 ms 18632 KB
#include "beechtree.h"
#include <algorithm> 
#include <queue>
#include <set>
#include <utility>

#define MAX 200030

int cn[MAX];
int lev[MAX];
int c2type[MAX];
int c2count0[MAX];
int c2count1[MAX];
int c2tail0[MAX];
int c2tail1[MAX];
int c2ans[MAX];
std::vector<int> down[MAX];

std::vector<int> beechtree(int N, int M, std::vector<int> P, std::vector<int> C)
{
    std::vector<int> ans{  };

    bool sub2 = true;
    for (int i = 1; sub2 && i < N; i++)
    {
        sub2 &= P[i] == i - 1;
    }

    if (sub2)
    {
        ans.push_back(1);
        ans.push_back(1);
        for (int i = N - 3; i >= 0; i--)
        {
            sub2 &= C[i + 1] == C[N - 1];
            ans.push_back(sub2 ? 1 : 0);
        }
        std::reverse(ans.begin(), ans.end());
        return ans;
    }

    std::fill_n(cn, M + 1, 0);
    for (size_t i = 1; i < C.size(); i++)
    {
        cn[C[i]]++;
    }
    std::vector<int> cc{  };
    for (size_t i = 1; i <= M; i++)
    {
        if (cn[i] > 0)
        {
            cc.push_back(i);
        }
    }
    for (size_t i = 0; i < C.size(); i++)
    {
        std::vector<int>::iterator ind = std::lower_bound(cc.begin(), cc.end(), C[i]);
        C[i] = ind - cc.begin();
    }

    bool sub4 = true;
    for (size_t i = 1; i <= M; i++)
    {
        if (cn[i] > 2)
        {
            sub4 = false;
            break;
        }
    }

    for (int i = 0; i < N; i++)
    {
        down[i].clear();
    }

    for (int i = 1; i < N; i++)
    {
        down[P[i]].push_back(i);
    }
    std::queue<int> q = {};
    std::fill_n(lev, N + 1, 0);
    std::fill_n(c2count0, N + 1, 0);
    std::fill_n(c2count1, N + 1, 0);
    std::fill_n(c2tail0, N + 1, 0);
    std::fill_n(c2tail1, N + 1, 0);
    std::fill_n(c2type, N + 1, 0);
    std::fill_n(c2ans, N + 1, 0);
    std::fill_n(cn, N + 1, 0);
    for (int i = 0; i < N; i++)
    {
        cn[i] = down[i].size();
        if (down[i].size() == 0)
        {
            q.push(i);
        }
    }

    int cc0 = 0;
    int cc1 = 0;
    int cc2 = 0;
    int cc3 = 0;

    bool c2 = cc.size() == 2;
    while (q.size() > 0)
    {
        int ii = q.front();
        q.pop();

        if (c2)
        {
            if (down[ii].size() == 0)
            {
                cc0++;
                c2ans[ii] = 1;
            }
            else if (down[ii].size() == 1)
            {
                cc1++;
                int t = down[ii][0];
                c2ans[ii] = c2ans[t];
                if (c2ans[t] == 1)
                {
                    if (C[t] == 0)
                    {
                        if (c2count1[t] != 0)
                        {
                            c2ans[ii] = 0;
                        }
                        else
                        {
                            c2count0[ii] = 1 + c2count0[t];
                            c2tail0[ii] = c2count0[ii];
                        }
                    }
                    else
                    {
                        if (c2count0[t] != 0)
                        {
                            c2ans[ii] = 0;
                        }
                        else
                        {
                            c2count1[ii] = 1 + c2count1[t];
                            c2tail1[ii] = c2count1[ii];
                        }
                    }
                }
            }
            else if (down[ii].size() == 2)
            {
                cc2++;
                int i0 = down[ii][0];
                int i1 = down[ii][1];
                if (C[i0] + C[i1] != 1 || c2ans[i0] + c2ans[i1] != 2)
                {
                    c2ans[ii] = 0;
                }
                else
                {
                    if (C[i0] == 1)
                    {
                        std::reverse(down[ii].begin(), down[ii].end());
                        int xxx = i0;
                        i0 = i1;
                        i1 = xxx;
                    }
                    int i01 = -1;
                    int i00 = -1;
                    for (size_t i = 0; i < down[i0].size(); i++)
                    {
                        if (C[down[i0][i]] == 1)
                            i01 = down[i0][i];
                        else i00 = down[i0][i];
                    }
                    int i10 = -1;
                    int i11 = -1;
                    for (size_t i = 0; i < down[i1].size(); i++)
                    {
                        if (C[down[i1][i]] == 0)
                            i10 = down[i1][i];
                        else i11 = down[i1][i];
                    }
                    if (lev[ii] == 1)
                    {
                        c2count0[ii] = 1;
                        c2count1[ii] = 1;
                        c2ans[ii] = 1;
                    }
                    else if (c2tail0[i1] > 1 && (c2count0[i0] - c2count1[i0] < 0 || c2count0[i0] - c2count1[i0] == 0 && c2count0[i0] != 0))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2tail0[i0] > 1 && (c2count0[i1] - c2count1[i1] < 0 || c2count0[i1] - c2count1[i1] == 0 && c2count0[i1] != 0))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2tail1[i0] > 1 && (c2count1[i1] - c2count0[i1] < 0 || c2count1[i1] - c2count0[i1] == 0 && c2count1[i1] != 0))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2tail1[i1] > 1 && (c2count1[i0] - c2count0[i0] < 0 || c2count1[i0] - c2count0[i0] == 0 && c2count1[i0] != 0))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2count0[i1] - c2count1[i1] > 0 && c2count1[i0] - c2count0[i0] > 0)
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2count1[i1] - c2count0[i1] > 0 && c2count0[i0] - c2count1[i0] > 0)
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2count0[i1] - c2count1[i1] > 0 && c2count1[i0] - c2count0[i0] > 0)
                    {
                        c2ans[ii] = 0;
                    }
                    else if (i01 != -1 && (c2count0[i1] < c2count0[i01] || c2count1[i1] < c2count1[i01]))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (i10 != -1 && (c2count0[i0] < c2count0[i10] || c2count1[i0] < c2count1[i10]))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2count0[i1] > c2count0[i0] && i00 != -1 && i10 != -1 && (c2count0[i10] < c2count0[i00] || c2count1[i10] < c2count1[i00]))
                    {
                        c2ans[ii] = 0;
                    }
                    else if (c2count1[i0] > c2count1[i1] && i11 != -1 && i01 != -1 && (c2count0[i01] < c2count0[i11] || c2count1[i01] < c2count1[i11]))
                    {
                        c2ans[ii] = 0;
                    }
                    else
                    {
                        c2ans[ii] = 1;
                        c2count0[ii] = 1 + c2count0[i0] + c2count0[i1];
                        c2count1[ii] = 1 + c2count1[i0] + c2count1[i1];
                        c2tail0[ii] = std::max(c2tail0[i0], c2tail0[i1]);
                        c2tail1[ii] = std::max(c2tail1[i0], c2tail1[i1]);
                    }
                }
            }
            else
            {
                cc3++;
                c2ans[ii] = 0;
            }
        }

        if (ii == 0)
            break;

        if (--cn[P[ii]] == 0)
        {
            q.push(P[ii]);
            lev[P[ii]] = 1 + lev[ii];
        }
    }

    if (c2)
    {
        for (int i = 0; i < N; i++)
        {
            ans.push_back(c2ans[i]);
        }
        //printf("%d %d %d %d\n", cc0, cc1, cc2, cc3);
    }
    /*if (N <= 8)
    {

    }*/
    else
    {
        for (int i = 0; i < N; i++)
        {
            if (i == 0 && !sub4 && lev[i] == 2)
            {
                std::set<int> s = {};
                bool ok = true;
                std::vector<std::pair<int, int>> sort = {};
                for (size_t j = 0; j < down[0].size(); j++)
                {
                    if (s.count(C[down[0][j]]) == 0)
                    {
                        s.insert(C[down[0][j]]);
                        sort.push_back(std::make_pair(down[down[0][j]].size(), down[0][j]));
                    }
                    else
                    {
                        ok = false;
                        break;
                    }
                }
                if (ok)
                {
                    std::sort(sort.begin(), sort.end());
                    std::reverse(sort.begin(), sort.end());
                    for (size_t k = 0; ok && k < sort.size(); k++)
                    {
                        std::set<int> next = {};
                        int index = sort[k].second;
                        for (size_t j = 0; j < down[index].size(); j++)
                        {
                            if (s.count(C[down[index][j]]) == 1 && next.count(C[down[index][j]]) == 0)
                            {
                                next.insert(C[down[index][j]]);
                            }
                            else
                            {
                                ok = false;
                                break;
                            }
                        }
                        s = next;
                    }
                }
                ans.push_back(ok ? 1 : 0);
            }
            else if (lev[i] == 0)
            {
                ans.push_back(1);
            }
            else if (lev[i] == 1)
            {
                std::set<int> s = {};
                bool ok = true;
                for (size_t j = 0; j < down[i].size(); j++)
                {
                    if (s.count(C[down[i][j]]) == 0)
                    {
                        s.insert(C[down[i][j]]);
                    }
                    else
                    {
                        ok = false;
                        break;
                    }
                }
                ans.push_back(ok ? 1 : 0);
            }
            else if (lev[i] == 2)
            {
                std::set<int> s = {};
                bool ok = true;
                int f = -1;
                for (size_t j = 0; j < down[i].size(); j++)
                {
                    if (down[down[i][j]].size() > 0)
                    {
                        if (f == -1)
                        {
                            f = down[i][j];
                        }
                        else
                        {
                            ok = false;
                            break;
                        }
                    }
                    if (s.count(C[down[i][j]]) == 0)
                    {
                        s.insert(C[down[i][j]]);
                    }
                    else
                    {
                        ok = false;
                        break;
                    }
                }
                if (ok)
                {
                    for (size_t j = 0; j < down[f].size(); j++)
                    {
                        if (s.count(C[down[f][j]]) == 1)
                        {
                            s.erase(C[down[f][j]]);
                        }
                        else
                        {
                            ok = false;
                            break;
                        }
                    }
                }
                ans.push_back(ok ? 1 : 0);
            }
            else
            {
                ans.push_back(0);
            }
        }
    }

    return ans;
}

Compilation message

beechtree.cpp: In function 'std::vector<int> beechtree(int, int, std::vector<int>, std::vector<int>)':
beechtree.cpp:48:26: warning: comparison of integer expressions of different signedness: 'size_t' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   48 |     for (size_t i = 1; i <= M; i++)
      |                        ~~^~~~
beechtree.cpp:62:26: warning: comparison of integer expressions of different signedness: 'size_t' {aka 'long unsigned int'} and 'int' [-Wsign-compare]
   62 |     for (size_t i = 1; i <= M; i++)
      |                        ~~^~~~
beechtree.cpp:189:118: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  189 |                     else if (c2tail0[i1] > 1 && (c2count0[i0] - c2count1[i0] < 0 || c2count0[i0] - c2count1[i0] == 0 && c2count0[i0] != 0))
      |                                                                                     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
beechtree.cpp:193:118: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  193 |                     else if (c2tail0[i0] > 1 && (c2count0[i1] - c2count1[i1] < 0 || c2count0[i1] - c2count1[i1] == 0 && c2count0[i1] != 0))
      |                                                                                     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
beechtree.cpp:197:118: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  197 |                     else if (c2tail1[i0] > 1 && (c2count1[i1] - c2count0[i1] < 0 || c2count1[i1] - c2count0[i1] == 0 && c2count1[i1] != 0))
      |                                                                                     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
beechtree.cpp:201:118: warning: suggest parentheses around '&&' within '||' [-Wparentheses]
  201 |                     else if (c2tail1[i1] > 1 && (c2count1[i0] - c2count0[i0] < 0 || c2count1[i0] - c2count0[i0] == 0 && c2count1[i0] != 0))
      |                                                                                     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9560 KB Output is correct
2 Incorrect 2 ms 9564 KB 2nd lines differ - on the 2nd token, expected: '1', found: '0'
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5468 KB Output is correct
2 Correct 1 ms 5468 KB Output is correct
3 Correct 2 ms 5468 KB Output is correct
4 Correct 1 ms 5468 KB Output is correct
5 Correct 1 ms 5468 KB Output is correct
6 Correct 1 ms 5468 KB Output is correct
7 Correct 3 ms 9564 KB Output is correct
8 Correct 2 ms 9564 KB Output is correct
9 Correct 2 ms 9564 KB Output is correct
10 Correct 2 ms 9564 KB Output is correct
11 Correct 2 ms 9644 KB Output is correct
12 Correct 2 ms 9564 KB Output is correct
13 Correct 2 ms 9564 KB Output is correct
14 Correct 2 ms 9564 KB Output is correct
15 Correct 2 ms 9564 KB Output is correct
16 Correct 2 ms 9560 KB Output is correct
17 Correct 2 ms 9564 KB Output is correct
18 Correct 2 ms 9560 KB Output is correct
19 Correct 2 ms 9564 KB Output is correct
20 Correct 2 ms 9560 KB Output is correct
21 Correct 2 ms 9564 KB Output is correct
22 Correct 2 ms 9564 KB Output is correct
23 Correct 2 ms 9564 KB Output is correct
24 Correct 2 ms 9564 KB Output is correct
25 Correct 2 ms 9564 KB Output is correct
26 Correct 2 ms 9560 KB Output is correct
27 Correct 2 ms 9564 KB Output is correct
28 Correct 2 ms 9564 KB Output is correct
29 Correct 2 ms 9564 KB Output is correct
30 Correct 2 ms 9564 KB Output is correct
31 Correct 2 ms 9564 KB Output is correct
32 Correct 2 ms 9564 KB Output is correct
33 Correct 2 ms 9564 KB Output is correct
34 Correct 2 ms 9564 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5468 KB Output is correct
2 Correct 1 ms 5468 KB Output is correct
3 Correct 2 ms 5468 KB Output is correct
4 Correct 1 ms 5468 KB Output is correct
5 Correct 1 ms 5468 KB Output is correct
6 Correct 1 ms 5468 KB Output is correct
7 Correct 46 ms 9784 KB Output is correct
8 Correct 46 ms 9780 KB Output is correct
9 Correct 2 ms 5468 KB Output is correct
10 Correct 1 ms 5536 KB Output is correct
11 Correct 1 ms 5524 KB Output is correct
12 Correct 2 ms 5468 KB Output is correct
13 Correct 2 ms 5468 KB Output is correct
14 Correct 2 ms 5464 KB Output is correct
15 Correct 2 ms 5464 KB Output is correct
16 Correct 2 ms 5468 KB Output is correct
17 Correct 45 ms 9788 KB Output is correct
18 Correct 45 ms 9676 KB Output is correct
19 Correct 46 ms 10040 KB Output is correct
20 Correct 46 ms 9676 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9564 KB Output is correct
2 Correct 2 ms 9564 KB Output is correct
3 Correct 2 ms 9564 KB Output is correct
4 Correct 2 ms 9564 KB Output is correct
5 Correct 2 ms 9564 KB Output is correct
6 Correct 2 ms 9564 KB Output is correct
7 Correct 2 ms 9564 KB Output is correct
8 Correct 3 ms 9564 KB Output is correct
9 Correct 2 ms 9564 KB Output is correct
10 Correct 2 ms 9564 KB Output is correct
11 Correct 3 ms 10332 KB Output is correct
12 Correct 3 ms 10332 KB Output is correct
13 Correct 3 ms 10332 KB Output is correct
14 Correct 3 ms 10332 KB Output is correct
15 Correct 48 ms 13728 KB Output is correct
16 Correct 39 ms 13656 KB Output is correct
17 Correct 40 ms 13772 KB Output is correct
18 Correct 60 ms 13920 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5468 KB Output is correct
2 Correct 1 ms 5468 KB Output is correct
3 Correct 3 ms 9564 KB Output is correct
4 Correct 2 ms 9564 KB Output is correct
5 Correct 46 ms 9784 KB Output is correct
6 Correct 46 ms 9780 KB Output is correct
7 Correct 2 ms 9564 KB Output is correct
8 Correct 2 ms 9564 KB Output is correct
9 Correct 3 ms 10332 KB Output is correct
10 Correct 3 ms 10332 KB Output is correct
11 Correct 87 ms 18632 KB Output is correct
12 Correct 102 ms 17260 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9560 KB Output is correct
2 Incorrect 2 ms 9564 KB 2nd lines differ - on the 2nd token, expected: '1', found: '0'
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5468 KB Output is correct
2 Correct 1 ms 5468 KB Output is correct
3 Correct 3 ms 9564 KB Output is correct
4 Correct 2 ms 9564 KB Output is correct
5 Correct 2 ms 9564 KB Output is correct
6 Correct 2 ms 9564 KB Output is correct
7 Correct 2 ms 9644 KB Output is correct
8 Correct 2 ms 9564 KB Output is correct
9 Correct 2 ms 9564 KB Output is correct
10 Correct 2 ms 9564 KB Output is correct
11 Correct 2 ms 9564 KB Output is correct
12 Correct 2 ms 9560 KB Output is correct
13 Correct 2 ms 9564 KB Output is correct
14 Correct 2 ms 9560 KB Output is correct
15 Correct 2 ms 9564 KB Output is correct
16 Correct 2 ms 9560 KB Output is correct
17 Correct 2 ms 9564 KB Output is correct
18 Correct 2 ms 9564 KB Output is correct
19 Correct 2 ms 9564 KB Output is correct
20 Correct 2 ms 9564 KB Output is correct
21 Correct 2 ms 9564 KB Output is correct
22 Correct 2 ms 9560 KB Output is correct
23 Correct 2 ms 9564 KB Output is correct
24 Correct 2 ms 9564 KB Output is correct
25 Correct 2 ms 5468 KB Output is correct
26 Correct 2 ms 5468 KB Output is correct
27 Correct 3 ms 5620 KB Output is correct
28 Correct 2 ms 5468 KB Output is correct
29 Correct 2 ms 5468 KB Output is correct
30 Correct 2 ms 9564 KB Output is correct
31 Correct 3 ms 9632 KB Output is correct
32 Correct 3 ms 9596 KB Output is correct
33 Incorrect 3 ms 9564 KB 2nd lines differ - on the 521st token, expected: '0', found: '1'
34 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9560 KB Output is correct
2 Incorrect 2 ms 9564 KB 2nd lines differ - on the 2nd token, expected: '1', found: '0'
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 5468 KB Output is correct
2 Correct 1 ms 5468 KB Output is correct
3 Correct 3 ms 9564 KB Output is correct
4 Correct 2 ms 9564 KB Output is correct
5 Correct 2 ms 9564 KB Output is correct
6 Correct 2 ms 9564 KB Output is correct
7 Correct 2 ms 9644 KB Output is correct
8 Correct 2 ms 9564 KB Output is correct
9 Correct 2 ms 9564 KB Output is correct
10 Correct 2 ms 9564 KB Output is correct
11 Correct 2 ms 9564 KB Output is correct
12 Correct 2 ms 9560 KB Output is correct
13 Correct 2 ms 9564 KB Output is correct
14 Correct 2 ms 9560 KB Output is correct
15 Correct 2 ms 9564 KB Output is correct
16 Correct 2 ms 9560 KB Output is correct
17 Correct 2 ms 9564 KB Output is correct
18 Correct 2 ms 9564 KB Output is correct
19 Correct 2 ms 9564 KB Output is correct
20 Correct 2 ms 9564 KB Output is correct
21 Correct 2 ms 9564 KB Output is correct
22 Correct 2 ms 9560 KB Output is correct
23 Correct 2 ms 9564 KB Output is correct
24 Correct 2 ms 9564 KB Output is correct
25 Correct 2 ms 5468 KB Output is correct
26 Correct 2 ms 5468 KB Output is correct
27 Correct 3 ms 5620 KB Output is correct
28 Correct 2 ms 5468 KB Output is correct
29 Correct 2 ms 5468 KB Output is correct
30 Correct 2 ms 9564 KB Output is correct
31 Correct 3 ms 9632 KB Output is correct
32 Correct 3 ms 9596 KB Output is correct
33 Incorrect 3 ms 9564 KB 2nd lines differ - on the 521st token, expected: '0', found: '1'
34 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 9560 KB Output is correct
2 Incorrect 2 ms 9564 KB 2nd lines differ - on the 2nd token, expected: '1', found: '0'
3 Halted 0 ms 0 KB -