#include "soccer.h"
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_pbds;
#define ar array
#define sz(v) int(v.size())
typedef long long ll;
const int INF = 1e9+10;
const int M = 2e3+10;
struct Sparse {
vector<vector<int>> sparse;
Sparse() {}
Sparse(vector<int>& v) {
int n = v.size();
sparse.push_back(v);
for (int i = 1; (1 << i) <= n; i++) {
sparse.push_back(vector<int>(n - (1 << i) + 1));
for (int j = 0; j + (1 << i) <= n; j++) {
sparse[i][j] = min(sparse[i-1][j], sparse[i-1][j + (1 << (i-1))]);
}
}
}
int qry(int l, int r) {
assert(l <= r);
int b = 31 - __builtin_clz(r - l + 1);
// cerr << "> " << l << ' ' << r << ''
return min(sparse[b][l], sparse[b][r - (1 << b) + 1]);
}
} ones[M], twos[M];
int get_cost(int i, int l, int r) {
return max(0, ones[i].qry(l, r) + twos[i].qry(l, r) - 1);
}
vector<int> impl[M][M];
vector<int> impr[M][M];
vector<int> has[M][M];
gp_hash_table<ll, int> dp;
ll h(int a, int b, int c) {
return (long long) a * M * M + b * M + c;
}
int biggest_stadium(int N, std::vector<std::vector<int>> F) {
for (int i = 0; i < N; i++) {
vector<int> up(N), down(N);
for (int j = 0; j < N; j++) {
while (i - up[j] >= 0 && !F[i - up[j]][j]) up[j]++;
while (i + down[j] < N && !F[i + down[j]][j]) down[j]++;
}
ones[i] = Sparse(up), twos[i] = Sparse(down);
}
auto add_imp = [&](int i, int l, int r) {
has[l][r].push_back(i);
impl[i][l].push_back(r);
impr[i][r].push_back(l);
};
for (int i = 0; i < N; i++) {
vector<int> blocks{-1};
for (int j = 0; j < N; j++) if (F[i][j])
blocks.push_back(j);
blocks.push_back(N);
for (int j = 1; j < sz(blocks); j++) if (blocks[j] > blocks[j-1] + 1) {
int l = blocks[j-1]+1, r = blocks[j]-1;
for (int k = l; k <= r; k++) {
add_imp(i, k, r);
if (k != r) add_imp(i, l, k);
}
}
}
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
sort(impl[i][j].begin(), impl[i][j].end());
sort(impr[i][j].begin(), impr[i][j].end());
}
}
auto upd = [&](int ni, int l, int r, int x, int cur_cost) {
if (ni < 0 || ni >= N) return;
int nl = upper_bound(impr[ni][r].begin(), impr[ni][r].end(), l) - impr[ni][r].begin();
if (nl < sz(impr[ni][r])) {
nl = impr[ni][r][nl];
dp[h(ni, nl, r)] = max(dp[h(ni, nl, r)], x + (get_cost(ni, nl, r) - cur_cost) * (r - nl + 1));
}
int nr = lower_bound(impl[ni][l].begin(), impl[ni][l].end(), r) - impl[ni][l].begin() - 1;
if (nr >= 0) {
nr = impl[ni][l][nr];
dp[h(ni, l, nr)] = max(dp[h(ni, l, nr)], x + (get_cost(ni, l, nr) - cur_cost) * (nr - l + 1));
}
};
// cerr << (double) clock() / CLOCKS_PER_SEC << endl;
for (int l = 0; l < N; l++) {
for (int r = N-1; r >= 0; r--) {
for (int i : has[l][r]) {
int cur_cost = get_cost(i, l, r);
dp[h(i, l, r)] = max(dp[h(i, l, r)], cur_cost * (r - l + 1));
// cerr << l << ' ' << r << ' ' << i << ' ' << dp[{i, l, r}] << endl;
int top = i - ones[i].qry(l, r);
int bot = i + twos[i].qry(l, r);
upd(i, l, r, dp[h(i, l, r)], cur_cost);
upd(top, l, r, dp[h(i, l, r)], cur_cost);
upd(bot, l, r, dp[h(i, l, r)], cur_cost);
}
}
}
int ans = 0;
for (auto& [_, v] : dp) ans = max(ans, v);
cerr << (double) clock() / CLOCKS_PER_SEC << endl;
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
112 ms |
284944 KB |
ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
111 ms |
284996 KB |
ok |
2 |
Correct |
112 ms |
284908 KB |
ok |
3 |
Correct |
110 ms |
285016 KB |
ok |
4 |
Correct |
116 ms |
285024 KB |
ok |
5 |
Correct |
111 ms |
284940 KB |
ok |
6 |
Correct |
110 ms |
284916 KB |
ok |
7 |
Correct |
148 ms |
288792 KB |
ok |
8 |
Execution timed out |
4608 ms |
341392 KB |
Time limit exceeded |
9 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
111 ms |
284996 KB |
ok |
2 |
Correct |
112 ms |
284908 KB |
ok |
3 |
Correct |
112 ms |
284876 KB |
ok |
4 |
Correct |
111 ms |
284912 KB |
ok |
5 |
Correct |
110 ms |
284908 KB |
ok |
6 |
Correct |
112 ms |
285004 KB |
ok |
7 |
Correct |
113 ms |
284892 KB |
ok |
8 |
Correct |
109 ms |
284920 KB |
ok |
9 |
Correct |
110 ms |
284884 KB |
ok |
10 |
Correct |
111 ms |
284996 KB |
ok |
11 |
Correct |
112 ms |
284912 KB |
ok |
12 |
Correct |
109 ms |
284952 KB |
ok |
13 |
Correct |
112 ms |
284896 KB |
ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
112 ms |
284944 KB |
ok |
2 |
Correct |
111 ms |
284996 KB |
ok |
3 |
Correct |
112 ms |
284908 KB |
ok |
4 |
Correct |
112 ms |
284876 KB |
ok |
5 |
Correct |
111 ms |
284912 KB |
ok |
6 |
Correct |
110 ms |
284908 KB |
ok |
7 |
Correct |
112 ms |
285004 KB |
ok |
8 |
Correct |
113 ms |
284892 KB |
ok |
9 |
Correct |
109 ms |
284920 KB |
ok |
10 |
Correct |
110 ms |
284884 KB |
ok |
11 |
Correct |
111 ms |
284996 KB |
ok |
12 |
Correct |
112 ms |
284912 KB |
ok |
13 |
Correct |
109 ms |
284952 KB |
ok |
14 |
Correct |
112 ms |
284896 KB |
ok |
15 |
Correct |
109 ms |
284996 KB |
ok |
16 |
Correct |
109 ms |
284964 KB |
ok |
17 |
Correct |
110 ms |
284940 KB |
ok |
18 |
Correct |
110 ms |
285004 KB |
ok |
19 |
Correct |
111 ms |
284992 KB |
ok |
20 |
Correct |
112 ms |
284944 KB |
ok |
21 |
Correct |
115 ms |
284984 KB |
ok |
22 |
Correct |
111 ms |
284928 KB |
ok |
23 |
Correct |
108 ms |
285000 KB |
ok |
24 |
Correct |
114 ms |
284928 KB |
ok |
25 |
Correct |
110 ms |
285012 KB |
ok |
26 |
Correct |
111 ms |
285020 KB |
ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
112 ms |
284944 KB |
ok |
2 |
Correct |
111 ms |
284996 KB |
ok |
3 |
Correct |
112 ms |
284908 KB |
ok |
4 |
Correct |
110 ms |
285016 KB |
ok |
5 |
Correct |
116 ms |
285024 KB |
ok |
6 |
Correct |
112 ms |
284876 KB |
ok |
7 |
Correct |
111 ms |
284912 KB |
ok |
8 |
Correct |
110 ms |
284908 KB |
ok |
9 |
Correct |
112 ms |
285004 KB |
ok |
10 |
Correct |
113 ms |
284892 KB |
ok |
11 |
Correct |
109 ms |
284920 KB |
ok |
12 |
Correct |
110 ms |
284884 KB |
ok |
13 |
Correct |
111 ms |
284996 KB |
ok |
14 |
Correct |
112 ms |
284912 KB |
ok |
15 |
Correct |
109 ms |
284952 KB |
ok |
16 |
Correct |
112 ms |
284896 KB |
ok |
17 |
Correct |
109 ms |
284996 KB |
ok |
18 |
Correct |
109 ms |
284964 KB |
ok |
19 |
Correct |
110 ms |
284940 KB |
ok |
20 |
Correct |
110 ms |
285004 KB |
ok |
21 |
Correct |
111 ms |
284992 KB |
ok |
22 |
Correct |
112 ms |
284944 KB |
ok |
23 |
Correct |
115 ms |
284984 KB |
ok |
24 |
Correct |
111 ms |
284928 KB |
ok |
25 |
Correct |
108 ms |
285000 KB |
ok |
26 |
Correct |
114 ms |
284928 KB |
ok |
27 |
Correct |
110 ms |
285012 KB |
ok |
28 |
Correct |
111 ms |
285020 KB |
ok |
29 |
Correct |
110 ms |
284964 KB |
ok |
30 |
Correct |
112 ms |
285264 KB |
ok |
31 |
Correct |
113 ms |
285236 KB |
ok |
32 |
Correct |
110 ms |
285156 KB |
ok |
33 |
Correct |
109 ms |
285048 KB |
ok |
34 |
Correct |
128 ms |
285004 KB |
ok |
35 |
Correct |
111 ms |
285068 KB |
ok |
36 |
Correct |
110 ms |
285000 KB |
ok |
37 |
Correct |
115 ms |
285012 KB |
ok |
38 |
Correct |
115 ms |
285064 KB |
ok |
39 |
Correct |
110 ms |
285024 KB |
ok |
40 |
Correct |
110 ms |
285256 KB |
ok |
41 |
Correct |
114 ms |
285244 KB |
ok |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
112 ms |
284944 KB |
ok |
2 |
Correct |
111 ms |
284996 KB |
ok |
3 |
Correct |
112 ms |
284908 KB |
ok |
4 |
Correct |
110 ms |
285016 KB |
ok |
5 |
Correct |
116 ms |
285024 KB |
ok |
6 |
Correct |
112 ms |
284876 KB |
ok |
7 |
Correct |
111 ms |
284912 KB |
ok |
8 |
Correct |
110 ms |
284908 KB |
ok |
9 |
Correct |
112 ms |
285004 KB |
ok |
10 |
Correct |
113 ms |
284892 KB |
ok |
11 |
Correct |
109 ms |
284920 KB |
ok |
12 |
Correct |
110 ms |
284884 KB |
ok |
13 |
Correct |
111 ms |
284996 KB |
ok |
14 |
Correct |
112 ms |
284912 KB |
ok |
15 |
Correct |
109 ms |
284952 KB |
ok |
16 |
Correct |
112 ms |
284896 KB |
ok |
17 |
Correct |
109 ms |
284996 KB |
ok |
18 |
Correct |
109 ms |
284964 KB |
ok |
19 |
Correct |
110 ms |
284940 KB |
ok |
20 |
Correct |
110 ms |
285004 KB |
ok |
21 |
Correct |
111 ms |
284992 KB |
ok |
22 |
Correct |
112 ms |
284944 KB |
ok |
23 |
Correct |
115 ms |
284984 KB |
ok |
24 |
Correct |
111 ms |
284928 KB |
ok |
25 |
Correct |
108 ms |
285000 KB |
ok |
26 |
Correct |
114 ms |
284928 KB |
ok |
27 |
Correct |
110 ms |
285012 KB |
ok |
28 |
Correct |
111 ms |
285020 KB |
ok |
29 |
Correct |
110 ms |
284964 KB |
ok |
30 |
Correct |
112 ms |
285264 KB |
ok |
31 |
Correct |
113 ms |
285236 KB |
ok |
32 |
Correct |
110 ms |
285156 KB |
ok |
33 |
Correct |
109 ms |
285048 KB |
ok |
34 |
Correct |
128 ms |
285004 KB |
ok |
35 |
Correct |
111 ms |
285068 KB |
ok |
36 |
Correct |
110 ms |
285000 KB |
ok |
37 |
Correct |
115 ms |
285012 KB |
ok |
38 |
Correct |
115 ms |
285064 KB |
ok |
39 |
Correct |
110 ms |
285024 KB |
ok |
40 |
Correct |
110 ms |
285256 KB |
ok |
41 |
Correct |
114 ms |
285244 KB |
ok |
42 |
Correct |
507 ms |
358828 KB |
ok |
43 |
Correct |
382 ms |
356020 KB |
ok |
44 |
Correct |
2750 ms |
362724 KB |
ok |
45 |
Execution timed out |
4558 ms |
344628 KB |
Time limit exceeded |
46 |
Halted |
0 ms |
0 KB |
- |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
112 ms |
284944 KB |
ok |
2 |
Correct |
111 ms |
284996 KB |
ok |
3 |
Correct |
112 ms |
284908 KB |
ok |
4 |
Correct |
110 ms |
285016 KB |
ok |
5 |
Correct |
116 ms |
285024 KB |
ok |
6 |
Correct |
111 ms |
284940 KB |
ok |
7 |
Correct |
110 ms |
284916 KB |
ok |
8 |
Correct |
148 ms |
288792 KB |
ok |
9 |
Execution timed out |
4608 ms |
341392 KB |
Time limit exceeded |
10 |
Halted |
0 ms |
0 KB |
- |