This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#include "aliens.h"
#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
typedef long double f;
typedef pair<ll,ll> pll;
typedef pair<f,ll> pfl;
typedef vector<ll> vll;
typedef vector<pll> vpll;
typedef vector<pfl> vp;
typedef vector<int> vi;
struct line {
f c;
f slope;
pfl operator()(ll x) {return make_pair(c + ((f)x)*slope, my_k);}
ll my_k;
};
struct node {
line* best;
node* lc;
node* rc;
};
typedef vector<line*> vl;
#define rep(a,b,c) for(ll a = b; a < c; a++)
#define pb(a) push_back(a)
#define mp(a,b) make_pair(a,b)
#define all(a) a.begin(),a.end()
#define sz(a) a.size()
pfl operator+ (pfl a, pfl b) {return mp(a.first+b.first,a.second+b.second);}
pfl _dp(f lambda);
void build(node*v, ll l, ll r);
void insert(node*v, line*seg, ll l, ll r);
pfl query(node*v, ll x, ll l, ll r);
ll n;
ll k;
vpll p;
vll h;
vp dp;
node* tree;
line inf;
vl lines;
long long take_photos(int N, int M, int K, vi R, vi C) {
k = K;
p.clear();
rep(i,0,N) {if (R[i] > C[i]) {swap(R[i],C[i]);}} // Flip over diagonal
rep(i,0,N) {p.pb(mp(C[i],-R[i]));}
sort(all(p)); // Sort in a way that makes worse points come before better points
rep(i,0,N) {
C[i] = p[i].first;
R[i] = -p[i].second;
}
/*cout << "C[i] R[i]" << endl;
rep(i,0,N) {cout << C[i] << " " << R[i] << endl;}*/
// C[i] is in increasing order
// R[i] is in decreasing order
// The first point is the optimal
p.clear();
p.pb(mp(-1,-1)); // thing....
rep(i,0,N) {
while ((C[i] >= p[sz(p)-1].first) && (R[i] <= p[sz(p)-1].second)) { // Prune bad points
p.pop_back();
}
p.pb(mp(C[i],R[i])); // Add points in (x,-y) format to p
}
/*cout << "points:" << endl;
rep(i,0,sz(p)) {cout << p[i].first << " " << p[i].second << endl;}*/
n = sz(p);
h.resize(n,0);
rep(i,0,n-1) {h[i] = p[i].first - p[i+1].second;}
// Prepare Li Chao tree
inf.c = f(100000000);
inf.slope = f(0);
/*cout << "h:" << endl;
rep(i,0,n) {cout << h[i] << " ";}
cout << endl;*/
/*rep(i,0,10) {cout << _dp(f(i)).first << endl;}*/
ll ans = 1000000000000;
f lo = f(0.0);
f hi = f(10000000001);
f mid;
pfl curr;
rep(i,0,64) {
mid = (lo)/f(2) + (hi)/f(2);
//cout << mid << endl;
curr = _dp(mid);
//cout << curr.first << " " << curr.second << " " << mid << endl;
if (curr.second == min(k,n-1)) {
ans = round(curr.first - mid*(f(curr.second)));
break;
} else if (curr.second > min(k,n-1)) {
lo = mid;
} else {
hi = mid;
/*ll tmp = round(curr.first - mid*(f(curr.second))); // Hotfix
ans = min(tmp, ans);*/
}
}
if (ans == 1000000000000) {ans = round(curr.first - mid*(f(k)));} // Based solution
//if (ans==-1) {ans = round(curr.first - mid*(f(curr.second)));}
//cout << n-1 << endl;
return ans;
}
pfl _dp(f lambda) {
tree = nullptr; // O(n) bc this litterally deletes the previous tree
lines.clear();
// Initialize the Li Chao Tree
tree = new node;
build(tree, 0, n); // Include dummy p[0] bc we need it in the dp
dp.clear();
dp.resize(n,mp(f(10000000000000000),0));
//dp[0] = mp(f( (p[0].first-p[0].second+1)*(p[0].first-p[0].second+1) ),1);
dp[0] = mp(f(0),0);
//cout << "built xd" << endl;
rep(i,0,n) {
/*rep(j,0,i) {
ll x_i = p[i].first;
ll x_j = p[j].first;
if (h[j] < 0) {
dp[i] = min(dp[i], dp[j] + mp(f( (x_i-x_j+h[j]+1)*(x_i-x_j+h[j]+1) ),1) + mp(lambda,0));
} else {
dp[i] = min(dp[i], dp[j] + mp(f( (x_i-x_j+h[j]+1)*(x_i-x_j+h[j]+1) - (h[j]+1)*(h[j]+1) ),1) + mp(lambda,0));
}
}*/
f x = (f)p[i].first;
if (i!=0) dp[i] = mp(x*x,0) + query(tree, i, 0, n) + mp(lambda,1); // wtf based
//cout << "i: " << i << " " << dp[i].first << " " << dp[i].second << endl;
lines.pb(nullptr);
lines[i] = new line;
lines[i]->my_k = dp[i].second; // include k xd
if (h[i] < 0) {
lines[i]->c = dp[i].first + x*x + (f)((h[i]+1)*(h[i]+1)) - 2*x*(f)(h[i]+1);
lines[i]->slope = (f)(-2*(x-h[i]-1));
} else {
lines[i]->c = dp[i].first + x*x - 2*x*(f)(h[i]+1);
lines[i]->slope = (f)(-2*(x-h[i]-1));
}
insert(tree, lines[i], 0, n);
}
/*cout << "dp: ";
rep(i,0,n) {cout << dp[i].first - lambda*dp[i].second << "," << dp[i].second << " ";}
cout << endl;*/
return dp[n-1];
}
void build(node*v, ll l, ll r) { // [l,r)
v->best = &inf;
if (l+1==r) {
v->lc = nullptr;
v->rc = nullptr;
} else {
v->lc = new node;
v->rc = new node;
ll m = (l+r)/2;
build(v->lc, l, m);
build(v->rc, m, r);
}
}
void insert(node*v, line*seg, ll l, ll r) {
ll m = (l+r)/2;
if (l+1==r) {
if ((*v->best)(p[m].first) > (*seg)(p[m].first)) {swap(v->best,seg);}
return;
}
// make seg the worse one (ie the larger one)
if ((*v->best)(p[m].first) > (*seg)(p[m].first)) {swap(v->best,seg);}
// no early returns bc whatever
if ((*v->best).slope > (*seg).slope) {
// The better (smaller) one has larger slope, which means the worse (larger) will undercut it later. Hence rc
insert(v->rc, seg, m, r);
} else {
// The better (smaller) one has smaller slopw, which means the worse (larger) will undercut it before. Hence lc
insert(v->lc, seg, l, m);
}
}
pfl query(node*v, ll x, ll l, ll r) {
ll m = (l+r)/2;
if (l+1 == r) {return (*v->best)(p[x].first);}
if (x < m) {
return min((*v->best)(p[x].first), query(v->lc, x, l, m));
} else {
return min((*v->best)(p[x].first), query(v->rc, x, m, r));
}
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |