Submission #836027

# Submission time Handle Problem Language Result Execution time Memory
836027 2023-08-24T05:18:25 Z maomao90 Comparing Plants (IOI20_plants) C++17
19 / 100
4000 ms 35192 KB
// I can do all things through Christ who strengthens me
// Philippians 4:13

#include "plants.h"
#include <bits/stdc++.h>
using namespace std;

#define REP(i, j, k) for (int i = j; i < (k); i++)
#define RREP(i, j, k) for (int i = j; i >= (k); i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if (0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 200005;

int n, k;
vi r;
int h[MAXN], th[MAXN];

vi adj[MAXN];
bool vis[MAXN];
void dfs(int u) {
    for (int v : adj[u]) {
        if (vis[v]) {
            continue;
        }
        vis[v] = 1;
        dfs(v);
    }
}

#define MLR int mid = (lo + hi) >> 1, lc = u << 1, rc = u << 1 ^ 1
struct SegTree {
    pair<ii, int> mx[MAXN * 4];
    ii lz[MAXN * 4];
    void init(int u = 1, int lo = 0, int hi = n - 1) {
        lz[u] = {0, 0};
        if (lo == hi) {
            mx[u] = {{r[lo], 0}, lo};
            return;
        }
        MLR;
        init(lc, lo, mid);
        init(rc, mid + 1, hi);
        mx[u] = max(mx[lc], mx[rc]);
    }
    void apply(ii x, int u, int lo, int hi) {
        mx[u].FI.FI += x.FI;
        mx[u].FI.SE += x.SE;
        lz[u].FI += x.FI;
        lz[u].SE += x.SE;
    }
    void propo(int u, int lo, int hi) {
        if (lz[u] == ii(0, 0)) {
            return;
        }
        MLR;
        apply(lz[u], lc, lo, mid);
        apply(lz[u], rc, mid + 1, hi);
        lz[u] = {0, 0};
    }
    void incre(int s, int e, ii x, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            incre(s - n, e - n, x);
            return;
        }
        if (e >= n) {
            incre(s, n - 1, x);
            incre(0, e - n, x);
            return;
        }
        if (lo >= s && hi <= e) {
            apply(x, u, lo, hi);
            return;
        }
        MLR;
        propo(u, lo, hi);
        if (s <= mid) {
            incre(s, e, x, lc, lo, mid);
        }
        if (e > mid) {
            incre(s, e, x, rc, mid + 1, hi);
        }
        mx[u] = max(mx[lc], mx[rc]);
    }
    pair<ii, int> qmx(int s, int e, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            return qmx(s - n, e - n);
        }
        if (e >= n) {
            return max(qmx(s, n - 1), qmx(0, e - n));
        }
        if (lo >= s && hi <= e) {
            return mx[u];
        }
        MLR;
        propo(u, lo, hi);
        pair<ii, int> res = {{-INF, -INF}, -INF};
        if (s <= mid) {
            mxto(res, qmx(s, e, lc, lo, mid));
        }
        if (e > mid) {
            mxto(res, qmx(s, e, rc, mid + 1, hi));
        }
        return res;
    }
} st1, st2;

struct DSU {
    int p[MAXN], rnk[MAXN];
    void init() {
        REP (i, 0, n) {
            p[i] = i;
            rnk[i] = 0;
        }
    }
    int findp(int i) {
        if (p[i] == i) {
            return i;
        }
        return p[i] = findp(p[i]);
    }
    bool join(int a, int b) {
        int pa = findp(a), pb = findp(b);
        if (pa == pb) {
            return 0;
        }
        if (rnk[pa] < rnk[pb]) {
            swap(pa, pb);
        }
        if (rnk[pa] == rnk[pb]) {
            rnk[pa]++;
        }
        p[pb] = pa;
        return 1;
    }
} ds1, ds2;

void init(int _k, vi _r) {
    k = _k; r = _r;
    n = SZ(r);
    st1.init();
    st2.init();
    ds1.init();
    ds2.init();
    REP (i, 0, n) {
        if (r[i] == k - 1) {
            st1.incre(i + 1, i + k - 1, {0, -1});
            st2.incre(i, i, {-INF, -INF});
        }
    }
    int z = 1;
    while (1) {
        vi todo;
        while (1) {
            auto [tmp, id] = st1.qmx(0, n - 1);
            if (tmp != ii(k - 1, 0)) {
                break;
            }
            h[id] = z;
            st1.incre(id, id, {-INF, -INF});
            todo.pb(id);
            if (1 || k == 2 || n <= 300) {
                REP (j, id + 1, id + k) {
                    if (h[j % n] == 0) {
                        //adj[id].pb(j % n);
                        ds1.join(id, j % n);
                    }
                }
            }
        }
        if (todo.empty()) {
            break;
        }
        for (int id : todo) {
            st1.incre(id + 1, id + k - 1, {0, 1});
            st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
            while (v.FI == k - 1) {
                st1.incre(u + 1, u + k - 1, {0, -1});
                st2.incre(u, u, {-INF, -INF});
                tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
            }
        }
        z++;
    }
    {
        REP (i, 0, n) {
            r[i] = k - 1 - r[i];
        }
        st1.init();
        st2.init();
        REP (i, 0, n) {
            if (r[i] == k - 1) {
                st1.incre(i + 1, i + k - 1, {0, -1});
                st2.incre(i, i, {-INF, -INF});
            }
        }
        int z = 1;
        while (1) {
            vi todo;
            while (1) {
                auto [tmp, id] = st1.qmx(0, n - 1);
                if (tmp != ii(k - 1, 0)) {
                    break;
                }
                th[id] = z;
                st1.incre(id, id, {-INF, -INF});
                todo.pb(id);
                if (1 || k == 2 || n <= 300) {
                    REP (j, id + 1, id + k) {
                        if (th[j % n] == 0) {
                            //adj[id].pb(j % n);
                            ds2.join(id, j % n);
                        }
                    }
                }
            }
            if (todo.empty()) {
                break;
            }
            for (int id : todo) {
                st1.incre(id + 1, id + k - 1, {0, 1});
                st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
                st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
                auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
                while (v.FI == k - 1) {
                    st1.incre(u + 1, u + k - 1, {0, -1});
                    st2.incre(u, u, {-INF, -INF});
                    tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
                }
            }
            z++;
        }
    }
	return;
}

int compare_plants(int x, int y) {
    /*
    if (n <= 300) {
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[x] = 1;
        dfs(x);
        if (vis[y]) {
            return -1;
        }
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[y] = 1;
        dfs(y);
        if (vis[x]) {
            return 1;
        }
        return 0;
    }
    */
    if (1 || k == 2 || n <= 300) {
        if (ds1.findp(x) != ds1.findp(y) && ds2.findp(x) != ds2.findp(y)) {
            return 0;
        }
        if (ds1.findp(x) == ds1.findp(y)) {
            if (h[x] > h[y]) {
                return 1;
            } else {
                return -1;
            }
        } else {
            if (th[x] > th[y]) {
                return -1;
            } else {
                return 1;
            }
        }
    } 
    if (h[x] > h[y]) {
        return 1;
    } else {
        return -1;
    }
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 45 ms 8008 KB Output is correct
7 Correct 107 ms 11084 KB Output is correct
8 Correct 782 ms 35192 KB Output is correct
9 Correct 782 ms 34964 KB Output is correct
10 Correct 782 ms 34852 KB Output is correct
11 Correct 712 ms 34872 KB Output is correct
12 Correct 638 ms 34912 KB Output is correct
13 Correct 618 ms 34904 KB Output is correct
14 Correct 598 ms 34892 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 5076 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 16 ms 5228 KB Output is correct
7 Correct 263 ms 8612 KB Output is correct
8 Correct 5 ms 5076 KB Output is correct
9 Correct 16 ms 5204 KB Output is correct
10 Correct 261 ms 8608 KB Output is correct
11 Correct 189 ms 8544 KB Output is correct
12 Correct 174 ms 8780 KB Output is correct
13 Correct 311 ms 8648 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 5076 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 16 ms 5228 KB Output is correct
7 Correct 263 ms 8612 KB Output is correct
8 Correct 5 ms 5076 KB Output is correct
9 Correct 16 ms 5204 KB Output is correct
10 Correct 261 ms 8608 KB Output is correct
11 Correct 189 ms 8544 KB Output is correct
12 Correct 174 ms 8780 KB Output is correct
13 Correct 311 ms 8648 KB Output is correct
14 Correct 2728 ms 11060 KB Output is correct
15 Execution timed out 4062 ms 34284 KB Time limit exceeded
16 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 50 ms 8032 KB Output is correct
4 Correct 822 ms 34952 KB Output is correct
5 Correct 1461 ms 35004 KB Output is correct
6 Execution timed out 4066 ms 34944 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Incorrect 3 ms 5076 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Incorrect 9 ms 5076 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 4948 KB Output is correct
6 Correct 45 ms 8008 KB Output is correct
7 Correct 107 ms 11084 KB Output is correct
8 Correct 782 ms 35192 KB Output is correct
9 Correct 782 ms 34964 KB Output is correct
10 Correct 782 ms 34852 KB Output is correct
11 Correct 712 ms 34872 KB Output is correct
12 Correct 638 ms 34912 KB Output is correct
13 Correct 618 ms 34904 KB Output is correct
14 Correct 598 ms 34892 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 2 ms 5076 KB Output is correct
17 Correct 2 ms 4948 KB Output is correct
18 Correct 2 ms 4948 KB Output is correct
19 Correct 3 ms 5076 KB Output is correct
20 Correct 16 ms 5228 KB Output is correct
21 Correct 263 ms 8612 KB Output is correct
22 Correct 5 ms 5076 KB Output is correct
23 Correct 16 ms 5204 KB Output is correct
24 Correct 261 ms 8608 KB Output is correct
25 Correct 189 ms 8544 KB Output is correct
26 Correct 174 ms 8780 KB Output is correct
27 Correct 311 ms 8648 KB Output is correct
28 Correct 2728 ms 11060 KB Output is correct
29 Execution timed out 4062 ms 34284 KB Time limit exceeded
30 Halted 0 ms 0 KB -