Submission #836022

# Submission time Handle Problem Language Result Execution time Memory
836022 2023-08-24T05:12:31 Z maomao90 Comparing Plants (IOI20_plants) C++17
49 / 100
1958 ms 35184 KB
// I can do all things through Christ who strengthens me
// Philippians 4:13

#include "plants.h"
#include <bits/stdc++.h>
using namespace std;

#define REP(i, j, k) for (int i = j; i < (k); i++)
#define RREP(i, j, k) for (int i = j; i >= (k); i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if (0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 200005;

int n, k;
vi r;
int h[MAXN], th[MAXN];

vi adj[MAXN];
bool vis[MAXN];
void dfs(int u) {
    for (int v : adj[u]) {
        if (vis[v]) {
            continue;
        }
        vis[v] = 1;
        dfs(v);
    }
}

#define MLR int mid = (lo + hi) >> 1, lc = u << 1, rc = u << 1 ^ 1
struct SegTree {
    pair<ii, int> mx[MAXN * 4];
    ii lz[MAXN * 4];
    void init(int u = 1, int lo = 0, int hi = n - 1) {
        lz[u] = {0, 0};
        if (lo == hi) {
            mx[u] = {{r[lo], 0}, lo};
            return;
        }
        MLR;
        init(lc, lo, mid);
        init(rc, mid + 1, hi);
        mx[u] = max(mx[lc], mx[rc]);
    }
    void apply(ii x, int u, int lo, int hi) {
        mx[u].FI.FI += x.FI;
        mx[u].FI.SE += x.SE;
        lz[u].FI += x.FI;
        lz[u].SE += x.SE;
    }
    void propo(int u, int lo, int hi) {
        if (lz[u] == ii(0, 0)) {
            return;
        }
        MLR;
        apply(lz[u], lc, lo, mid);
        apply(lz[u], rc, mid + 1, hi);
        lz[u] = {0, 0};
    }
    void incre(int s, int e, ii x, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            incre(s - n, e - n, x);
            return;
        }
        if (e >= n) {
            incre(s, n - 1, x);
            incre(0, e - n, x);
            return;
        }
        if (lo >= s && hi <= e) {
            apply(x, u, lo, hi);
            return;
        }
        MLR;
        propo(u, lo, hi);
        if (s <= mid) {
            incre(s, e, x, lc, lo, mid);
        }
        if (e > mid) {
            incre(s, e, x, rc, mid + 1, hi);
        }
        mx[u] = max(mx[lc], mx[rc]);
    }
    pair<ii, int> qmx(int s, int e, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            return qmx(s - n, e - n);
        }
        if (e >= n) {
            return max(qmx(s, n - 1), qmx(0, e - n));
        }
        if (lo >= s && hi <= e) {
            return mx[u];
        }
        MLR;
        propo(u, lo, hi);
        pair<ii, int> res = {{-INF, -INF}, -INF};
        if (s <= mid) {
            mxto(res, qmx(s, e, lc, lo, mid));
        }
        if (e > mid) {
            mxto(res, qmx(s, e, rc, mid + 1, hi));
        }
        return res;
    }
} st1, st2;

struct DSU {
    int p[MAXN], rnk[MAXN];
    void init() {
        REP (i, 0, n) {
            p[i] = i;
            rnk[i] = 0;
        }
    }
    int findp(int i) {
        if (p[i] == i) {
            return i;
        }
        return p[i] = findp(p[i]);
    }
    bool join(int a, int b) {
        int pa = findp(a), pb = findp(b);
        if (pa == pb) {
            return 0;
        }
        if (rnk[pa] < rnk[pb]) {
            swap(pa, pb);
        }
        if (rnk[pa] == rnk[pb]) {
            rnk[pa]++;
        }
        p[pb] = pa;
        return 1;
    }
} ds1, ds2;

void init(int _k, vi _r) {
    k = _k; r = _r;
    n = SZ(r);
    st1.init();
    st2.init();
    ds1.init();
    ds2.init();
    REP (i, 0, n) {
        if (r[i] == k - 1) {
            st1.incre(i + 1, i + k - 1, {0, -1});
            st2.incre(i, i, {-INF, -INF});
        }
    }
    int z = 1;
    while (1) {
        vi todo;
        while (1) {
            auto [tmp, id] = st1.qmx(0, n - 1);
            if (tmp != ii(k - 1, 0)) {
                break;
            }
            cerr << id << ' ' << z << '\n';
            h[id] = z;
            st1.incre(id, id, {-INF, -INF});
            todo.pb(id);
            if (k == 2) {
                REP (j, id + 1, id + k) {
                    if (h[j % n] == 0) {
                        ds1.join(id, j % n);
                    } else {
                        ds2.join(id, j % n);
                    }
                }
            }
            if (k != 2 && n <= 300) {
                REP (j, id + 1, id + k) {
                    if (h[j % n] == 0) {
                        //adj[id].pb(j % n);
                        ds1.join(id, j % n);
                    }
                }
            }
        }
        if (todo.empty()) {
            break;
        }
        for (int id : todo) {
            st1.incre(id + 1, id + k - 1, {0, 1});
            st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
            while (v.FI == k - 1) {
                st1.incre(u + 1, u + k - 1, {0, -1});
                st2.incre(u, u, {-INF, -INF});
                tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
            }
        }
        z++;
    }
    {
        REP (i, 0, n) {
            r[i] = k - 1 - r[i];
        }
        st1.init();
        st2.init();
        REP (i, 0, n) {
            if (r[i] == k - 1) {
                st1.incre(i + 1, i + k - 1, {0, -1});
                st2.incre(i, i, {-INF, -INF});
            }
        }
        int z = 1;
        while (1) {
            vi todo;
            while (1) {
                auto [tmp, id] = st1.qmx(0, n - 1);
                if (tmp != ii(k - 1, 0)) {
                    break;
                }
                cerr << id << ' ' << z << '\n';
                th[id] = z;
                st1.incre(id, id, {-INF, -INF});
                todo.pb(id);
                if (k != 2 && n <= 300) {
                    REP (j, id + 1, id + k) {
                        if (th[j % n] == 0) {
                            //adj[id].pb(j % n);
                            ds2.join(id, j % n);
                        }
                    }
                }
            }
            if (todo.empty()) {
                break;
            }
            for (int id : todo) {
                st1.incre(id + 1, id + k - 1, {0, 1});
                st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
                st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
                auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
                while (v.FI == k - 1) {
                    st1.incre(u + 1, u + k - 1, {0, -1});
                    st2.incre(u, u, {-INF, -INF});
                    tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
                }
            }
            z++;
        }
    }
	return;
}

int compare_plants(int x, int y) {
    /*
    if (n <= 300) {
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[x] = 1;
        dfs(x);
        if (vis[y]) {
            return -1;
        }
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[y] = 1;
        dfs(y);
        if (vis[x]) {
            return 1;
        }
        return 0;
    }
    */
    if ((k == 2 || n <= 300) && ds1.findp(x) != ds1.findp(y) && ds2.findp(x) != ds2.findp(y)) {
        return 0;
    } else if (h[x] > h[y]) {
        return 1;
    } else {
        return -1;
    }
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 2 ms 4948 KB Output is correct
6 Correct 47 ms 7884 KB Output is correct
7 Correct 125 ms 11104 KB Output is correct
8 Correct 774 ms 35184 KB Output is correct
9 Correct 799 ms 35076 KB Output is correct
10 Correct 778 ms 35028 KB Output is correct
11 Correct 684 ms 34928 KB Output is correct
12 Correct 664 ms 34880 KB Output is correct
13 Correct 614 ms 34912 KB Output is correct
14 Correct 614 ms 34948 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 5200 KB Output is correct
3 Correct 2 ms 5076 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 72 ms 8656 KB Output is correct
8 Correct 4 ms 5076 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 77 ms 8668 KB Output is correct
11 Correct 62 ms 8588 KB Output is correct
12 Correct 70 ms 8944 KB Output is correct
13 Correct 68 ms 8672 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 5200 KB Output is correct
3 Correct 2 ms 5076 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 3 ms 5076 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 72 ms 8656 KB Output is correct
8 Correct 4 ms 5076 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 77 ms 8668 KB Output is correct
11 Correct 62 ms 8588 KB Output is correct
12 Correct 70 ms 8944 KB Output is correct
13 Correct 68 ms 8672 KB Output is correct
14 Correct 196 ms 11084 KB Output is correct
15 Correct 1943 ms 35032 KB Output is correct
16 Correct 178 ms 11084 KB Output is correct
17 Correct 1958 ms 35064 KB Output is correct
18 Correct 1112 ms 34892 KB Output is correct
19 Correct 1150 ms 34860 KB Output is correct
20 Correct 1615 ms 35020 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 53 ms 8008 KB Output is correct
4 Correct 848 ms 35016 KB Output is correct
5 Correct 1192 ms 34888 KB Output is correct
6 Correct 1665 ms 34892 KB Output is correct
7 Correct 1873 ms 35032 KB Output is correct
8 Correct 1953 ms 34948 KB Output is correct
9 Correct 1052 ms 35100 KB Output is correct
10 Correct 1040 ms 34980 KB Output is correct
11 Correct 613 ms 34892 KB Output is correct
12 Correct 797 ms 34892 KB Output is correct
13 Correct 1132 ms 34892 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Incorrect 2 ms 5076 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5072 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 3 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Incorrect 7 ms 5076 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 2 ms 4948 KB Output is correct
6 Correct 47 ms 7884 KB Output is correct
7 Correct 125 ms 11104 KB Output is correct
8 Correct 774 ms 35184 KB Output is correct
9 Correct 799 ms 35076 KB Output is correct
10 Correct 778 ms 35028 KB Output is correct
11 Correct 684 ms 34928 KB Output is correct
12 Correct 664 ms 34880 KB Output is correct
13 Correct 614 ms 34912 KB Output is correct
14 Correct 614 ms 34948 KB Output is correct
15 Correct 3 ms 4948 KB Output is correct
16 Correct 3 ms 5200 KB Output is correct
17 Correct 2 ms 5076 KB Output is correct
18 Correct 2 ms 4948 KB Output is correct
19 Correct 3 ms 5076 KB Output is correct
20 Correct 8 ms 5204 KB Output is correct
21 Correct 72 ms 8656 KB Output is correct
22 Correct 4 ms 5076 KB Output is correct
23 Correct 8 ms 5204 KB Output is correct
24 Correct 77 ms 8668 KB Output is correct
25 Correct 62 ms 8588 KB Output is correct
26 Correct 70 ms 8944 KB Output is correct
27 Correct 68 ms 8672 KB Output is correct
28 Correct 196 ms 11084 KB Output is correct
29 Correct 1943 ms 35032 KB Output is correct
30 Correct 178 ms 11084 KB Output is correct
31 Correct 1958 ms 35064 KB Output is correct
32 Correct 1112 ms 34892 KB Output is correct
33 Correct 1150 ms 34860 KB Output is correct
34 Correct 1615 ms 35020 KB Output is correct
35 Correct 3 ms 4948 KB Output is correct
36 Correct 3 ms 4948 KB Output is correct
37 Correct 53 ms 8008 KB Output is correct
38 Correct 848 ms 35016 KB Output is correct
39 Correct 1192 ms 34888 KB Output is correct
40 Correct 1665 ms 34892 KB Output is correct
41 Correct 1873 ms 35032 KB Output is correct
42 Correct 1953 ms 34948 KB Output is correct
43 Correct 1052 ms 35100 KB Output is correct
44 Correct 1040 ms 34980 KB Output is correct
45 Correct 613 ms 34892 KB Output is correct
46 Correct 797 ms 34892 KB Output is correct
47 Correct 1132 ms 34892 KB Output is correct
48 Correct 2 ms 4948 KB Output is correct
49 Correct 2 ms 4948 KB Output is correct
50 Correct 2 ms 4948 KB Output is correct
51 Correct 2 ms 4948 KB Output is correct
52 Incorrect 2 ms 5076 KB Output isn't correct
53 Halted 0 ms 0 KB -