Submission #836019

# Submission time Handle Problem Language Result Execution time Memory
836019 2023-08-24T05:03:40 Z maomao90 Comparing Plants (IOI20_plants) C++17
38 / 100
4000 ms 43780 KB
// I can do all things through Christ who strengthens me
// Philippians 4:13

#include "plants.h"
#include <bits/stdc++.h>
using namespace std;

#define REP(i, j, k) for (int i = j; i < (k); i++)
#define RREP(i, j, k) for (int i = j; i >= (k); i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if (0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 200005;

int n, k;
vi r;
int h[MAXN];

vi adj[MAXN];
bool vis[MAXN];
void dfs(int u) {
    for (int v : adj[u]) {
        if (vis[v]) {
            continue;
        }
        vis[v] = 1;
        dfs(v);
    }
}

#define MLR int mid = (lo + hi) >> 1, lc = u << 1, rc = u << 1 ^ 1
struct SegTree {
    pair<ii, int> mx[MAXN * 4];
    ii lz[MAXN * 4];
    void init(int u = 1, int lo = 0, int hi = n - 1) {
        lz[u] = {0, 0};
        if (lo == hi) {
            mx[u] = {{r[lo], 0}, lo};
            return;
        }
        MLR;
        init(lc, lo, mid);
        init(rc, mid + 1, hi);
        mx[u] = max(mx[lc], mx[rc]);
    }
    void apply(ii x, int u, int lo, int hi) {
        mx[u].FI.FI += x.FI;
        mx[u].FI.SE += x.SE;
        lz[u].FI += x.FI;
        lz[u].SE += x.SE;
    }
    void propo(int u, int lo, int hi) {
        if (lz[u] == ii(0, 0)) {
            return;
        }
        MLR;
        apply(lz[u], lc, lo, mid);
        apply(lz[u], rc, mid + 1, hi);
        lz[u] = {0, 0};
    }
    void incre(int s, int e, ii x, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            incre(s - n, e - n, x);
            return;
        }
        if (e >= n) {
            incre(s, n - 1, x);
            incre(0, e - n, x);
            return;
        }
        if (lo >= s && hi <= e) {
            apply(x, u, lo, hi);
            return;
        }
        MLR;
        propo(u, lo, hi);
        if (s <= mid) {
            incre(s, e, x, lc, lo, mid);
        }
        if (e > mid) {
            incre(s, e, x, rc, mid + 1, hi);
        }
        mx[u] = max(mx[lc], mx[rc]);
    }
    pair<ii, int> qmx(int s, int e, int u = 1, int lo = 0, int hi = n - 1) {
        if (s >= n) {
            return qmx(s - n, e - n);
        }
        if (e >= n) {
            return max(qmx(s, n - 1), qmx(0, e - n));
        }
        if (lo >= s && hi <= e) {
            return mx[u];
        }
        MLR;
        propo(u, lo, hi);
        pair<ii, int> res = {{-INF, -INF}, -INF};
        if (s <= mid) {
            mxto(res, qmx(s, e, lc, lo, mid));
        }
        if (e > mid) {
            mxto(res, qmx(s, e, rc, mid + 1, hi));
        }
        return res;
    }
} st1, st2;

struct DSU {
    int p[MAXN], rnk[MAXN];
    void init() {
        REP (i, 0, n) {
            p[i] = i;
            rnk[i] = 0;
        }
    }
    int findp(int i) {
        if (p[i] == i) {
            return i;
        }
        return p[i] = findp(p[i]);
    }
    bool join(int a, int b) {
        int pa = findp(a), pb = findp(b);
        if (pa == pb) {
            return 0;
        }
        if (rnk[pa] < rnk[pb]) {
            swap(pa, pb);
        }
        if (rnk[pa] == rnk[pb]) {
            rnk[pa]++;
        }
        p[pb] = pa;
        return 1;
    }
} ds1, ds2;

void init(int _k, vi _r) {
    k = _k; r = _r;
    n = SZ(r);
    st1.init();
    st2.init();
    ds1.init();
    ds2.init();
    REP (i, 0, n) {
        if (r[i] == k - 1) {
            st1.incre(i + 1, i + k - 1, {0, -1});
            st2.incre(i, i, {-INF, -INF});
        }
    }
    int z = 1;
    while (1) {
        vi todo;
        while (1) {
            auto [tmp, id] = st1.qmx(0, n - 1);
            if (tmp != ii(k - 1, 0)) {
                break;
            }
            cerr << id << ' ' << z << '\n';
            h[id] = z;
            st1.incre(id, id, {-INF, -INF});
            todo.pb(id);
            if (k == 2 || n <= 300) {
                REP (j, id + 1, id + k) {
                    if (h[j % n] == 0) {
                        adj[id].pb(j % n);
                        //ds1.join(id, j % n);
                    } else {
                        adj[j % n].pb(id);
                        //ds2.join(id, j % n);
                    }
                }
            }
        }
        if (todo.empty()) {
            break;
        }
        for (int id : todo) {
            st1.incre(id + 1, id + k - 1, {0, 1});
            st1.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            st2.incre(id - k + 1 + n, id - 1 + n, {1, 0});
            auto [v, u] = st2.qmx(id - k + 1 + n, id - 1 + n);
            while (v.FI == k - 1) {
                st1.incre(u + 1, u + k - 1, {0, -1});
                st2.incre(u, u, {-INF, -INF});
                tie(v, u) = st2.qmx(id - k + 1 + n, id - 1 + n);
            }
        }
        z++;
    }
	return;
}

int compare_plants(int x, int y) {
    if (k == 2 || n <= 300) {
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[x] = 1;
        dfs(x);
        if (vis[y]) {
            return -1;
        }
        REP (i, 0, n) {
            vis[i] = 0;
        }
        vis[y] = 1;
        dfs(y);
        if (vis[x]) {
            return 1;
        }
        return 0;
    }
    if (h[x] > h[y]) {
        return 1;
    } else {
        return -1;
    }
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 2 ms 4948 KB Output is correct
6 Correct 63 ms 7952 KB Output is correct
7 Correct 634 ms 11824 KB Output is correct
8 Correct 1367 ms 40216 KB Output is correct
9 Correct 2163 ms 40624 KB Output is correct
10 Execution timed out 4019 ms 40484 KB Time limit exceeded
11 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 7 ms 5076 KB Output is correct
6 Correct 6 ms 5204 KB Output is correct
7 Correct 58 ms 8796 KB Output is correct
8 Correct 37 ms 5204 KB Output is correct
9 Correct 9 ms 5204 KB Output is correct
10 Correct 71 ms 8728 KB Output is correct
11 Correct 70 ms 8660 KB Output is correct
12 Correct 55 ms 8908 KB Output is correct
13 Correct 60 ms 8728 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 7 ms 5076 KB Output is correct
6 Correct 6 ms 5204 KB Output is correct
7 Correct 58 ms 8796 KB Output is correct
8 Correct 37 ms 5204 KB Output is correct
9 Correct 9 ms 5204 KB Output is correct
10 Correct 71 ms 8728 KB Output is correct
11 Correct 70 ms 8660 KB Output is correct
12 Correct 55 ms 8908 KB Output is correct
13 Correct 60 ms 8728 KB Output is correct
14 Correct 116 ms 11212 KB Output is correct
15 Correct 1061 ms 34420 KB Output is correct
16 Correct 118 ms 11100 KB Output is correct
17 Correct 1067 ms 34296 KB Output is correct
18 Correct 654 ms 34256 KB Output is correct
19 Correct 620 ms 34268 KB Output is correct
20 Correct 874 ms 34284 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 5124 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 47 ms 8012 KB Output is correct
4 Correct 443 ms 34168 KB Output is correct
5 Correct 660 ms 34160 KB Output is correct
6 Correct 907 ms 34160 KB Output is correct
7 Correct 1026 ms 34168 KB Output is correct
8 Correct 1087 ms 34160 KB Output is correct
9 Correct 681 ms 34192 KB Output is correct
10 Correct 588 ms 34328 KB Output is correct
11 Execution timed out 4045 ms 43780 KB Time limit exceeded
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 3 ms 5076 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 4 ms 5076 KB Output is correct
6 Correct 6 ms 5076 KB Output is correct
7 Correct 57 ms 5972 KB Output is correct
8 Correct 1201 ms 6220 KB Output is correct
9 Correct 123 ms 5952 KB Output is correct
10 Correct 1221 ms 6176 KB Output is correct
11 Correct 58 ms 5972 KB Output is correct
12 Correct 167 ms 5976 KB Output is correct
13 Correct 3355 ms 6464 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 3 ms 4948 KB Output is correct
5 Incorrect 7 ms 5076 KB Output isn't correct
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 2 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 2 ms 4948 KB Output is correct
6 Correct 63 ms 7952 KB Output is correct
7 Correct 634 ms 11824 KB Output is correct
8 Correct 1367 ms 40216 KB Output is correct
9 Correct 2163 ms 40624 KB Output is correct
10 Execution timed out 4019 ms 40484 KB Time limit exceeded
11 Halted 0 ms 0 KB -