Submission #833213

# Submission time Handle Problem Language Result Execution time Memory
833213 2023-08-22T03:15:34 Z maomao90 Monster Game (JOI21_monster) C++17
89 / 100
102 ms 412 KB
// Hallelujah, praise the one who set me free
// Hallelujah, death has lost its grip on me
// You have broken every chain, There's salvation in your name
// Jesus Christ, my living hope
#include <bits/stdc++.h> 
#include "monster.h"
using namespace std;

#define REP(i, s, e) for (int i = (s); i < (e); i++)
#define RREP(i, s, e) for (int i = (s); i >= (e); i--)
template <class T>
inline bool mnto(T& a, T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T& a, T b) {return a < b ? a = b, 1: 0;}

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
typedef tuple<int, int, int> iii;
#define ALL(_a) _a.begin(), _a.end()
#define SZ(_a) (int) _a.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if (0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005ll;
const int MAXN = 1005;


namespace {
    int n;
    vi p, op;
    int tmp[MAXN];
    bool res[MAXN];
    void dnc(int l, int r) {
        if (l == r) {
            return;
        }
        int m = l + r >> 1;
        dnc(l, m); dnc(m + 1, r);
        int pl = l, pr = m + 1;
        int ptr = l;
        while (pl <= m || pr <= r) {
            if (pr > r || (pl <= m && !Query(p[pl], p[pr]))) {
                tmp[ptr++] = p[pl++];
            } else {
                tmp[ptr++] = p[pr++];
            }
        }
        REP (i, l, r + 1) {
            p[i] = tmp[i];
        }
    }
}

vi Solve(int N) {
    n = N;
    p = vi(n);
    iota(ALL(p), 0);
    dnc(0, n - 1);
    op = p;
    REP (i, 0, n) {
        cerr << p[i] << ' ';
    }
    cerr << '\n';
    bool pos = 1;
    REP (i, 0, n - 1) {
        if (Query(p[i], p[i + 1])) {
            continue;
        }
        int id = -1;
        REP (j, i + 1, n) {
            if (Query(p[i], p[j])) {
                id = j;
                break;
            }
        }
        if (id == -1) {
            pos = 0;
            break;
        }
        /*
        if (i == 0 && id == 2) {
            REP (j, 3, n) {
                if (!Query(p[0], p[j])) {
                    id = j;
                    break;
                }
            }
            if (id == 3) {
                bool gd = 0;
                REP (j, 3, n) {
                    if (Query(p[1], p[j])) {
                        gd = 1;
                        break;
                    }
                }
                if (gd) {
                    swap(p[1], p[2]);
                } else {
                    swap(p[0], p[2]);
                }
                i = 1;
                continue;
            }
            if (Query(p[id - 2], p[id - 1])) {
                id--;
            } else {
                id -= 2;
            }
        }
        */
        reverse(p.begin() + i + 1, p.begin() + id + 1);
        i = id - 1;
    }
    /*
    if (pos) {
        REP (i, 0, n - 1) {
            if (!Query(p[i], p[i + 1])) {
                pos = 0;
                break;
            }
        }
    }
    */
    if (pos) {
        REP (i, 0, n - 2) {
            if (Query(p[i], p[i + 2])) {
                pos = 0;
                break;
            }
        }
    }
    if (pos) {
        REP (i, 0, n) {
            cerr << p[i] << ' ';
        }
        cerr << '\n';
        vi t(n);
        REP (i, 0, n) {
            t[p[i]] = i;
        }
        return t;
    }
    p = op;
    REP (i, 1, n) {
        res[i] = Query(p[0], p[i]);
    }
    assert(res[1] == 0);
    int prv = 1;
    vi v;
    REP (i, 2, n) {
        if (res[i] != res[i - 1]) {
            v.pb(prv);
            prv = i;
        }
    }
    v.pb(prv);
    assert(SZ(v) >= 2);
    if (SZ(v) >= 4) {
        reverse(p.begin(), p.begin() + v[2]);
    } else if ((SZ(v) == 2 ? n : v[2]) - v[1] == 1) {
        swap(p[0], p[1]);
    } else {
        reverse(p.begin(), p.begin() + v[2] - 1);
    }
    REP (i, 0, n - 1) {
        if (Query(p[i], p[i + 1])) {
            continue;
        }
        int id = -1;
        REP (j, i + 1, n) {
            if (Query(p[i], p[j])) {
                id = j;
                break;
            }
        }
        assert(id != -1);
        reverse(p.begin() + i + 1, p.begin() + id + 1);
        i = id - 1;
    }
    vi t(n);
    REP (i, 0, n) {
        t[p[i]] = i;
    }
    return t;
}

Compilation message

monster.cpp: In function 'void {anonymous}::dnc(int, int)':
monster.cpp:51:19: warning: suggest parentheses around '+' inside '>>' [-Wparentheses]
   51 |         int m = l + r >> 1;
      |                 ~~^~~
# Verdict Execution time Memory Grader output
1 Correct 0 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 1 ms 208 KB Output is correct
4 Correct 0 ms 208 KB Output is correct
5 Correct 0 ms 208 KB Output is correct
6 Correct 1 ms 208 KB Output is correct
7 Correct 1 ms 208 KB Output is correct
8 Correct 1 ms 208 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 208 KB Output is correct
11 Correct 1 ms 208 KB Output is correct
12 Correct 1 ms 208 KB Output is correct
13 Correct 0 ms 208 KB Output is correct
14 Correct 0 ms 208 KB Output is correct
15 Correct 1 ms 208 KB Output is correct
16 Correct 12 ms 208 KB Output is correct
17 Correct 6 ms 332 KB Output is correct
18 Correct 12 ms 208 KB Output is correct
19 Correct 10 ms 304 KB Output is correct
20 Correct 11 ms 208 KB Output is correct
21 Correct 0 ms 208 KB Output is correct
22 Correct 0 ms 208 KB Output is correct
23 Correct 0 ms 208 KB Output is correct
24 Correct 1 ms 208 KB Output is correct
25 Correct 1 ms 208 KB Output is correct
26 Correct 8 ms 208 KB Output is correct
27 Correct 0 ms 208 KB Output is correct
28 Correct 0 ms 208 KB Output is correct
29 Correct 0 ms 208 KB Output is correct
30 Correct 1 ms 208 KB Output is correct
31 Correct 0 ms 208 KB Output is correct
32 Correct 11 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 1 ms 208 KB Output is correct
4 Correct 0 ms 208 KB Output is correct
5 Correct 0 ms 208 KB Output is correct
6 Correct 1 ms 208 KB Output is correct
7 Correct 1 ms 208 KB Output is correct
8 Correct 1 ms 208 KB Output is correct
9 Correct 1 ms 208 KB Output is correct
10 Correct 1 ms 208 KB Output is correct
11 Correct 1 ms 208 KB Output is correct
12 Correct 1 ms 208 KB Output is correct
13 Correct 0 ms 208 KB Output is correct
14 Correct 0 ms 208 KB Output is correct
15 Correct 1 ms 208 KB Output is correct
16 Correct 12 ms 208 KB Output is correct
17 Correct 6 ms 332 KB Output is correct
18 Correct 12 ms 208 KB Output is correct
19 Correct 10 ms 304 KB Output is correct
20 Correct 11 ms 208 KB Output is correct
21 Correct 0 ms 208 KB Output is correct
22 Correct 0 ms 208 KB Output is correct
23 Correct 0 ms 208 KB Output is correct
24 Correct 1 ms 208 KB Output is correct
25 Correct 1 ms 208 KB Output is correct
26 Correct 8 ms 208 KB Output is correct
27 Correct 0 ms 208 KB Output is correct
28 Correct 0 ms 208 KB Output is correct
29 Correct 0 ms 208 KB Output is correct
30 Correct 1 ms 208 KB Output is correct
31 Correct 0 ms 208 KB Output is correct
32 Correct 11 ms 208 KB Output is correct
33 Correct 70 ms 412 KB Output is correct
34 Correct 69 ms 284 KB Output is correct
35 Correct 87 ms 284 KB Output is correct
36 Correct 47 ms 292 KB Output is correct
37 Correct 63 ms 284 KB Output is correct
38 Correct 69 ms 296 KB Output is correct
39 Correct 67 ms 284 KB Output is correct
40 Correct 102 ms 208 KB Output is correct
41 Correct 63 ms 312 KB Output is correct
42 Correct 87 ms 208 KB Output is correct
43 Correct 68 ms 208 KB Output is correct
44 Correct 59 ms 288 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 79 ms 260 KB Partially correct
2 Partially correct 79 ms 284 KB Partially correct
3 Partially correct 58 ms 288 KB Partially correct
4 Partially correct 100 ms 288 KB Partially correct
5 Partially correct 71 ms 292 KB Partially correct
6 Partially correct 91 ms 288 KB Partially correct
7 Partially correct 50 ms 284 KB Partially correct
8 Partially correct 81 ms 288 KB Partially correct
9 Partially correct 68 ms 292 KB Partially correct
10 Partially correct 48 ms 288 KB Partially correct
11 Partially correct 73 ms 208 KB Partially correct
12 Partially correct 88 ms 208 KB Partially correct
13 Partially correct 51 ms 292 KB Partially correct
14 Partially correct 51 ms 292 KB Partially correct
15 Correct 45 ms 300 KB Output is correct
16 Correct 48 ms 288 KB Output is correct
17 Partially correct 69 ms 284 KB Partially correct
18 Correct 54 ms 288 KB Output is correct