Submission #832286

# Submission time Handle Problem Language Result Execution time Memory
832286 2023-08-21T08:25:57 Z patrikpavic2 Nestabilnost (COI23_nestabilnost) C++17
100 / 100
539 ms 199304 KB
#include <cstdio>
#include <vector>
#include <algorithm>
#include <set>

#define X first
#define Y second
#define PB push_back

using namespace std;

typedef vector < int > vi;
typedef long long ll;
typedef pair < ll, ll > pii;
typedef vector < pii > vp;

const int N = 3e5 + 50;
const ll INF = (ll)1e18;

int n, cst[N], a[N], naj[N], tko[N], min_cst[N], pos = 0;
vector < int > v[N];
ll dp_nula[N], off[N];
vector < ll > dp_am[N], dp_od[N];
set < pii > miin[N];
set < pii > govna[N];

inline ll get_dp(int v, int k) {
	if(a[v] >= k) return dp_nula[v];
	return dp_am[v][max(0, (int)dp_am[v].size() - (k - a[v]))] + off[v];	
}

void minaj(ll &x, ll y) {
	x = min(x, y);
}

void ocisti_od_sranja(int v, int dokle) {
	if(miin[v].size() == 0) return;
	int j = a[v] + 1; ll dos = INF;
	for(auto it = miin[v].begin();it != miin[v].end() && it -> X <= dokle;) {
		while(j < it -> X) {
			minaj(dp_am[v][(int)dp_am[v].size() - (j - a[v] - 1) - 1], dos);
			j++;
		}
		dos = min(dos, it -> Y);
		it = miin[v].erase(it);
		govna[v].erase({it -> Y + min_cst[it -> X], it -> X});
		
	}
	if(dokle < a[v] + (int)dp_am[v].size()) {
		miin[v].insert({dokle + 1, dos});
		govna[v].insert({dos + min_cst[dokle + 1], dokle + 1});
	}
	while(j <= dokle) minaj(dp_am[v][(int)dp_am[v].size() - (j - a[v] - 1) - 1], dos), j++;
	for(int j = a[v] + dp_am[v].size() - dokle;j < (int)dp_am[v].size();j++) {
		dp_od[v][j] = dp_am[v][j] + cst[a[v] + (int)dp_am[v].size() - j];
		if(j) dp_od[v][j] = min(dp_od[v][j], dp_od[v][j - 1]);
	}
}

void f(int x, int lst) {
	for(int y : v[x]) if(y != lst) f(y, x);
	if(tko[x] != -1) {
		swap(dp_am[x], dp_am[tko[x]]);
		swap(dp_od[x], dp_od[tko[x]]);
		swap(miin[x], miin[tko[x]]);
		swap(govna[x], govna[tko[x]]);
		off[x] = off[tko[x]];
		dp_am[x].PB(dp_nula[tko[x]] - off[x]);
		dp_od[x].PB(min(dp_od[x].back(), dp_am[x].back() + cst[a[x] + 1]));
	} else {
		off[x] = 0;
		dp_am[x] = {0, 0};
		dp_od[x] = {cst[a[x] + 2], min(cst[a[x] + 2], cst[a[x] + 1])};
	}
	for(int y : v[x]) {
		if(y == lst || y == tko[x]) continue;
		if(a[y] != a[x] + 1) {
			off[x] += dp_nula[y];
			if(!a[y]) { 
				dp_am[x].back() += min(0LL, get_dp(y, a[x] + 1) - dp_nula[y]);
				dp_od[x].back() = min(dp_am[x].back() + cst[a[x] + 1], dp_od[x][(int)dp_od[x].size() - 2]);
			}
		} else {
			ocisti_od_sranja(y, a[y] + dp_am[y].size());
			ocisti_od_sranja(x, a[y] + dp_am[y].size());
			ll y_poc = get_dp(y, a[y] + dp_am[y].size());
			off[x] += y_poc;
			for(int k = 0;k < (int)dp_am[y].size();k++) {
				dp_am[x][(int)dp_am[x].size() - k - 2] += get_dp(y, a[y] + k + 1) - y_poc;
			}
			dp_am[x].back() += dp_nula[y] - y_poc;
			for(int k = (int)dp_am[y].size(); k >= 0; k--) {
				int ind_x = (int)dp_am[x].size() - k - 1;
				dp_od[x][ind_x] = dp_am[x][ind_x] + cst[a[x] + k + 1];
				if(ind_x) dp_od[x][ind_x] = min(dp_od[x][ind_x], dp_od[x][ind_x - 1]);
			}
		}
	}
	dp_nula[x] = dp_od[x].back() + off[x];
	dp_nula[x] = min(dp_nula[x], off[x] + dp_am[x][0] + min_cst[a[x] + dp_am[x].size()]);
	if((int)govna[x].size() > 0)
		dp_nula[x] = min(dp_nula[x], off[x] + govna[x].begin()->X);
	miin[x].insert({a[x] + 2, dp_nula[x] - off[x]});
	govna[x].insert({dp_nula[x] - off[x] + min_cst[a[x] + 2], a[x] + 2});
	dp_am[x].back() = min(dp_am[x].back(), dp_nula[x] - off[x]);
	dp_od[x].back() = min(dp_od[x][(int)dp_od[x].size() - 2], dp_am[x].back() + cst[a[x] + 1]);
}

void dfs_priprema(int x, int lst) {
	tko[x] = -1; naj[x] = 2; pos++;
	for(int y : v[x]) {
		if(y == lst) continue;
		dfs_priprema(y, x);
		if(a[y] == a[x] + 1) {
			if(tko[x] == -1 || naj[y] > naj[tko[x]]) {
				naj[x] = naj[y] + 1; tko[x] = y;
			}
		}
	}
}


int main(){
	scanf("%d", &n);
	for(int i = 1;i <= n;i++) scanf("%d", a + i);
	for(int i = 1;i <= n;i++) scanf("%d", cst + i);
	cst[n + 1] = cst[n]; min_cst[n + 1] = cst[n + 1];
	min_cst[n] = cst[n];
	for(int i = n - 1;i >= 1;i--) min_cst[i] = min(cst[i], min_cst[i + 1]);
	for(int i = 1;i < n;i++) {
		int x, y; scanf("%d%d", &x, &y);
		v[x].PB(y), v[y].PB(x);
	}
	dfs_priprema(1, 1);
	if(pos != n) return 0;
	f(1, 1);
	printf("%lld\n", dp_nula[1]);
	return 0;
}

Compilation message

code1.cpp: In function 'int main()':
code1.cpp:124:7: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  124 |  scanf("%d", &n);
      |  ~~~~~^~~~~~~~~~
code1.cpp:125:33: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  125 |  for(int i = 1;i <= n;i++) scanf("%d", a + i);
      |                            ~~~~~^~~~~~~~~~~~~
code1.cpp:126:33: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  126 |  for(int i = 1;i <= n;i++) scanf("%d", cst + i);
      |                            ~~~~~^~~~~~~~~~~~~~~
code1.cpp:131:18: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  131 |   int x, y; scanf("%d%d", &x, &y);
      |             ~~~~~^~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 30 ms 51860 KB Output is correct
2 Correct 30 ms 51916 KB Output is correct
3 Correct 30 ms 51924 KB Output is correct
4 Correct 29 ms 51992 KB Output is correct
5 Correct 30 ms 51988 KB Output is correct
6 Correct 29 ms 51936 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 238 ms 199304 KB Output is correct
2 Correct 247 ms 187152 KB Output is correct
3 Correct 255 ms 188900 KB Output is correct
4 Correct 307 ms 186160 KB Output is correct
5 Correct 234 ms 193960 KB Output is correct
6 Correct 230 ms 193104 KB Output is correct
7 Correct 243 ms 192920 KB Output is correct
8 Correct 235 ms 193100 KB Output is correct
9 Correct 246 ms 193576 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 25 ms 49620 KB Output is correct
2 Correct 25 ms 49636 KB Output is correct
3 Correct 24 ms 49628 KB Output is correct
4 Correct 25 ms 49620 KB Output is correct
5 Correct 26 ms 49628 KB Output is correct
6 Correct 25 ms 49620 KB Output is correct
7 Correct 26 ms 49668 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 30 ms 51860 KB Output is correct
2 Correct 30 ms 51916 KB Output is correct
3 Correct 30 ms 51924 KB Output is correct
4 Correct 29 ms 51992 KB Output is correct
5 Correct 30 ms 51988 KB Output is correct
6 Correct 29 ms 51936 KB Output is correct
7 Correct 25 ms 49620 KB Output is correct
8 Correct 25 ms 49636 KB Output is correct
9 Correct 24 ms 49628 KB Output is correct
10 Correct 25 ms 49620 KB Output is correct
11 Correct 26 ms 49628 KB Output is correct
12 Correct 25 ms 49620 KB Output is correct
13 Correct 26 ms 49668 KB Output is correct
14 Correct 29 ms 50644 KB Output is correct
15 Correct 29 ms 50656 KB Output is correct
16 Correct 28 ms 50508 KB Output is correct
17 Correct 29 ms 50636 KB Output is correct
18 Correct 30 ms 50856 KB Output is correct
19 Correct 29 ms 51124 KB Output is correct
20 Correct 30 ms 50876 KB Output is correct
21 Correct 29 ms 50904 KB Output is correct
22 Correct 28 ms 51004 KB Output is correct
23 Correct 29 ms 50996 KB Output is correct
24 Correct 29 ms 51048 KB Output is correct
25 Correct 30 ms 51012 KB Output is correct
26 Correct 29 ms 51028 KB Output is correct
27 Correct 29 ms 51100 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 30 ms 51860 KB Output is correct
2 Correct 30 ms 51916 KB Output is correct
3 Correct 30 ms 51924 KB Output is correct
4 Correct 29 ms 51992 KB Output is correct
5 Correct 30 ms 51988 KB Output is correct
6 Correct 29 ms 51936 KB Output is correct
7 Correct 238 ms 199304 KB Output is correct
8 Correct 247 ms 187152 KB Output is correct
9 Correct 255 ms 188900 KB Output is correct
10 Correct 307 ms 186160 KB Output is correct
11 Correct 234 ms 193960 KB Output is correct
12 Correct 230 ms 193104 KB Output is correct
13 Correct 243 ms 192920 KB Output is correct
14 Correct 235 ms 193100 KB Output is correct
15 Correct 246 ms 193576 KB Output is correct
16 Correct 25 ms 49620 KB Output is correct
17 Correct 25 ms 49636 KB Output is correct
18 Correct 24 ms 49628 KB Output is correct
19 Correct 25 ms 49620 KB Output is correct
20 Correct 26 ms 49628 KB Output is correct
21 Correct 25 ms 49620 KB Output is correct
22 Correct 26 ms 49668 KB Output is correct
23 Correct 29 ms 50644 KB Output is correct
24 Correct 29 ms 50656 KB Output is correct
25 Correct 28 ms 50508 KB Output is correct
26 Correct 29 ms 50636 KB Output is correct
27 Correct 30 ms 50856 KB Output is correct
28 Correct 29 ms 51124 KB Output is correct
29 Correct 30 ms 50876 KB Output is correct
30 Correct 29 ms 50904 KB Output is correct
31 Correct 28 ms 51004 KB Output is correct
32 Correct 29 ms 50996 KB Output is correct
33 Correct 29 ms 51048 KB Output is correct
34 Correct 30 ms 51012 KB Output is correct
35 Correct 29 ms 51028 KB Output is correct
36 Correct 29 ms 51100 KB Output is correct
37 Correct 537 ms 133960 KB Output is correct
38 Correct 457 ms 107860 KB Output is correct
39 Correct 460 ms 105096 KB Output is correct
40 Correct 475 ms 105448 KB Output is correct
41 Correct 519 ms 126864 KB Output is correct
42 Correct 498 ms 121456 KB Output is correct
43 Correct 490 ms 121872 KB Output is correct
44 Correct 492 ms 124748 KB Output is correct
45 Correct 539 ms 140100 KB Output is correct
46 Correct 475 ms 130248 KB Output is correct
47 Correct 512 ms 132000 KB Output is correct
48 Correct 508 ms 131912 KB Output is correct
49 Correct 505 ms 132080 KB Output is correct
50 Correct 527 ms 137876 KB Output is correct
51 Correct 532 ms 137044 KB Output is correct
52 Correct 532 ms 140012 KB Output is correct
53 Correct 535 ms 141880 KB Output is correct