Submission #829378

# Submission time Handle Problem Language Result Execution time Memory
829378 2023-08-18T09:59:08 Z Josia Werewolf (IOI18_werewolf) C++17
100 / 100
1467 ms 150936 KB
#include "werewolf.h"
#include <bits/stdc++.h>

using namespace std;


int N, M, Q;
vector<vector<int>> graph;
vector<int> human, wolf;
vector<vector<int>> treeWolf;
vector<vector<int>> treeHuman;
vector<pair<int, int>> prepostWolf;
vector<pair<int, int>> prepostHuman;
vector<vector<int>> jumpWolf;
vector<vector<int>> jumpHuman;


struct ufToMakeArrays {
    vector<int> chefs;
    void init() {
        chefs.resize(N);
        for (int i = 0; i<N; i++) {
            chefs[i] = i;
        }
    }

    int find(int x) {
        if (chefs[x] == x) return x;
        return chefs[x] = find(chefs[x]);
    }

    void unite(int a, int b, bool minmax) {
        a = find(a);
        b = find(b);
        if (a == b) return;
        if (minmax?a<b:a>b) swap(a, b);

        chefs[b] = a;
    }


    void makeTreeWolf() {
        init();
        for (int i = 0; i<N; i++) {
            for (int u: graph[i]) {
                if (u >= i) continue;
                if (find(u) == find(i)) continue;
                treeWolf[find(i)].push_back(find(u));
                treeWolf[find(u)].push_back(find(i));
                unite(u, i, 1);
            }
        }
    }


    void makeTreeHuman() {
        init();
        for (int i = N-1; i>=0; i--) {
            for (int u: graph[i]) {
                if (u <= i) continue;
                if (find(u) == find(i)) continue;
                treeHuman[find(i)].push_back(find(u));
                treeHuman[find(u)].push_back(find(i));
                unite(u, i, 0);
            }
        }
    }

    void dfsWolf(int v, int p) {
        jumpWolf[0][v] = p;
        prepostWolf[v].first = wolf.size();
        wolf.push_back(v);
        for (int i: treeWolf[v]) {
            if (i == p) continue;
            dfsWolf(i, v);
        }
        prepostWolf[v].second = wolf.size()-1;
    }

    void dfsHuman(int v, int p) {
        jumpHuman[0][v] = p;
        prepostHuman[v].first = human.size();
        human.push_back(v);
        for (int i: treeHuman[v]) {
            if (i == p) continue;
            dfsHuman(i, v);
        }
        prepostHuman[v].second = human.size()-1;
    }


    void make() {
        treeHuman.assign(N, vector<int>()); treeWolf.assign(N, vector<int>());

        makeTreeWolf(); makeTreeHuman();

        wolf.clear(); human.clear();

        prepostHuman.assign(N, {0, 0});
        prepostWolf.assign(N, {0, 0});

        jumpHuman.assign(20, vector<int>(N));
        jumpWolf.assign(20, vector<int>(N));

        dfsWolf(N-1, -1); dfsHuman(0, -1);


        for (int i = 1; i<20; i++) {
            for (int j = 0; j<N; j++) {
                jumpHuman[i][j] = jumpHuman[i-1][j] == -1 ? -1 : jumpHuman[i-1][jumpHuman[i-1][j]];
                jumpWolf[i][j] = jumpWolf[i-1][j] == -1 ? -1 : jumpWolf[i-1][jumpWolf[i-1][j]];
            }
        }
    }
};



vector<int> wolfInv, humanInv, humanToWolf;

void makeInv() {
    wolfInv.resize(N);
    humanInv.resize(N);
    for (int i = 0; i<N; i++) wolfInv[wolf[i]] = i;
    for (int i = 0; i<N; i++) humanInv[human[i]] = i;

    humanToWolf.resize(N);
    for (int i = 0; i<N; i++) humanToWolf[i] = wolfInv[human[i]];
}


struct seg {
    struct node {
        int val=0, left=-1, right=-1;
    };

    vector<node> tree = {node()};

    void build(int v, int rl, int rr) {
        if (rl == rr) return;

        tree[v].left = tree.size();
        tree.push_back(node());
        tree[v].right = tree.size();
        tree.push_back(node());

        int rm = (rl + rr)/2;

        build(tree[v].left, rl, rm);
        build(tree[v].right, rm+1, rr);
    }

    int update(int v, int rl, int rr, int pos, int x) {
        if (rl == rr) {
            int newV = tree.size();
            tree.push_back(tree[v]);

            tree[newV].val += x;
            return newV;
        }
        int rm = (rl + rr)/2;

        int newV = tree.size();
        tree.push_back(tree[v]);

        if (pos <= rm) tree[newV].left = update(tree[newV].left, rl, rm, pos, x);
        else tree[newV].right = update(tree[newV].right, rm+1, rr, pos, x);

        tree[newV].val = tree[tree[newV].left].val + tree[tree[newV].right].val;

        return newV;
    }

    int query(int v, int rl, int rr, int ql, int qr) {
        if (ql > qr) return 0;
        if (rl == ql && rr == qr) return tree[v].val;

        int rm = (rl + rr)/2;

        return query(tree[v].left, rl, rm, ql, min(qr, rm)) + query(tree[v].right, rm+1, rr, max(ql, rm+1), qr);
    }

    vector<int> times;

    int queryDouble(int hl, int hr, int wl, int wr) {
        // cerr << query(times[wr], 0, N-1, hl, hr) << " - " << query(times[wl-1], 0, N-1, hl, hr) << "\n";
        // return query(times[wr], 0, N-1, hl, hr) - (wl==0?0:query(times[wl-1], 0, N-1, hl, hr));
        return query(times[hr], 0, N-1, wl, wr) - (hl==0?0:query(times[hl-1], 0, N-1, wl, wr));
    }

    void init() {
        build(0, 0, N-1);
        for (int i = 0; i<N; i++) {
            times.push_back(update(i==0?0:times.back(), 0, N-1, humanToWolf[i], 1));
        }
        assert((int)times.size() == N);
    }
};


pair<int, int> getRangeHuman(int pos, int lim) {
    for (int i = 19; i>=0; i--) {
        if (jumpHuman[i][pos] != -1 && jumpHuman[i][pos] >= lim) {
            pos = jumpHuman[i][pos];
        }
    }
    return prepostHuman[pos];
}

pair<int, int> getRangeWolf(int pos, int lim) {
    for (int i = 19; i>=0; i--) {
        if (jumpWolf[i][pos] != -1 && jumpWolf[i][pos] <= lim) {
            pos = jumpWolf[i][pos];
        }
    }
    return prepostWolf[pos];
}


vector<int> check_validity(int _N, vector<int> X, vector<int> Y, vector<int> S, vector<int> E, vector<int> L, vector<int> R) {
    N = _N;
    M = X.size();
    Q = S.size();

    graph.clear();
    graph.resize(N);
    for (int i = 0; i<M; i++) {
        graph[X[i]].push_back(Y[i]);
        graph[Y[i]].push_back(X[i]);
    }

    ufToMakeArrays blub;
    blub.make();

    makeInv();


    // for (int i: human) cerr << i << " ";
    // cerr << "\n";
    // for (int i: wolf) cerr << i << " ";
    // cerr << "\n";


    seg tree;

    tree.init();



    vector<int> res(Q, 0);

    for (int i = 0; i<Q; i++) {
        // cerr << humanInv[S[i]] << "\n";
        pair<int, int> rangeHuman = getRangeHuman(S[i], L[i]);
        pair<int, int> rangeWolf = getRangeWolf(E[i], R[i]);

        // cerr << rangeHuman.first << " " << rangeHuman.second << " " << rangeWolf.first << " " << rangeWolf.second << "\n";

        // cerr << tree.queryDouble(rangeHuman.first, rangeHuman.second, rangeWolf.first, rangeWolf.second) << "\n";

        if (tree.queryDouble(rangeHuman.first, rangeHuman.second, rangeWolf.first, rangeWolf.second)) res[i] = 1;
    }
    return res;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 304 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 304 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 6 ms 2524 KB Output is correct
11 Correct 6 ms 2496 KB Output is correct
12 Correct 5 ms 2520 KB Output is correct
13 Correct 5 ms 2652 KB Output is correct
14 Correct 6 ms 2568 KB Output is correct
15 Correct 6 ms 2652 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 715 ms 141744 KB Output is correct
2 Correct 934 ms 143972 KB Output is correct
3 Correct 874 ms 142448 KB Output is correct
4 Correct 711 ms 141768 KB Output is correct
5 Correct 681 ms 141736 KB Output is correct
6 Correct 682 ms 141828 KB Output is correct
7 Correct 623 ms 141572 KB Output is correct
8 Correct 814 ms 144008 KB Output is correct
9 Correct 573 ms 142360 KB Output is correct
10 Correct 461 ms 141776 KB Output is correct
11 Correct 427 ms 141800 KB Output is correct
12 Correct 536 ms 141708 KB Output is correct
13 Correct 856 ms 144720 KB Output is correct
14 Correct 799 ms 144692 KB Output is correct
15 Correct 822 ms 144756 KB Output is correct
16 Correct 788 ms 144716 KB Output is correct
17 Correct 617 ms 141616 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 304 KB Output is correct
2 Correct 1 ms 340 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 1 ms 296 KB Output is correct
5 Correct 1 ms 340 KB Output is correct
6 Correct 1 ms 300 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 6 ms 2524 KB Output is correct
11 Correct 6 ms 2496 KB Output is correct
12 Correct 5 ms 2520 KB Output is correct
13 Correct 5 ms 2652 KB Output is correct
14 Correct 6 ms 2568 KB Output is correct
15 Correct 6 ms 2652 KB Output is correct
16 Correct 715 ms 141744 KB Output is correct
17 Correct 934 ms 143972 KB Output is correct
18 Correct 874 ms 142448 KB Output is correct
19 Correct 711 ms 141768 KB Output is correct
20 Correct 681 ms 141736 KB Output is correct
21 Correct 682 ms 141828 KB Output is correct
22 Correct 623 ms 141572 KB Output is correct
23 Correct 814 ms 144008 KB Output is correct
24 Correct 573 ms 142360 KB Output is correct
25 Correct 461 ms 141776 KB Output is correct
26 Correct 427 ms 141800 KB Output is correct
27 Correct 536 ms 141708 KB Output is correct
28 Correct 856 ms 144720 KB Output is correct
29 Correct 799 ms 144692 KB Output is correct
30 Correct 822 ms 144756 KB Output is correct
31 Correct 788 ms 144716 KB Output is correct
32 Correct 617 ms 141616 KB Output is correct
33 Correct 956 ms 142596 KB Output is correct
34 Correct 221 ms 32276 KB Output is correct
35 Correct 1345 ms 144488 KB Output is correct
36 Correct 1204 ms 142112 KB Output is correct
37 Correct 1467 ms 143808 KB Output is correct
38 Correct 1040 ms 142580 KB Output is correct
39 Correct 1112 ms 148344 KB Output is correct
40 Correct 904 ms 150516 KB Output is correct
41 Correct 913 ms 143424 KB Output is correct
42 Correct 552 ms 142080 KB Output is correct
43 Correct 1299 ms 147864 KB Output is correct
44 Correct 1282 ms 143820 KB Output is correct
45 Correct 750 ms 148568 KB Output is correct
46 Correct 888 ms 148376 KB Output is correct
47 Correct 870 ms 144928 KB Output is correct
48 Correct 886 ms 144740 KB Output is correct
49 Correct 878 ms 144940 KB Output is correct
50 Correct 1010 ms 144768 KB Output is correct
51 Correct 680 ms 150936 KB Output is correct
52 Correct 634 ms 150924 KB Output is correct