Submission #82831

# Submission time Handle Problem Language Result Execution time Memory
82831 2018-11-02T01:22:28 Z Benq Meetings (IOI18_meetings) C++14
100 / 100
2763 ms 324788 KB
#pragma GCC optimize ("O3")
#pragma GCC target ("sse4")
 
#include <bits/stdc++.h>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/rope>
 
using namespace std;
using namespace __gnu_pbds;
using namespace __gnu_cxx;
 
typedef long long ll;
typedef long double ld;
typedef complex<ld> cd;
 
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef pair<ld,ld> pd;
 
typedef vector<int> vi;
typedef vector<ld> vd;
typedef vector<ll> vl;
typedef vector<pi> vpi;
typedef vector<pl> vpl;
typedef vector<cd> vcd;
 
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>;
 
#define FOR(i, a, b) for (int i=a; i<(b); i++)
#define F0R(i, a) for (int i=0; i<(a); i++)
#define FORd(i,a,b) for (int i = (b)-1; i >= a; i--)
#define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--)
 
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define f first
#define s second
#define lb lower_bound
#define ub upper_bound
#define all(x) x.begin(), x.end()
 
const int MOD = 1000000007;
const ll INF = 1e18;
const int MX = 1<<20;
const int SZ = 750001;
 
#include "meetings.h"
 
pl operator*(const pl& l, const ll& r) { return {l.f*r,l.s*r}; }
pl operator+(const pl& l, const pl& r) { return {l.f+r.f,l.s+r.s}; }
pl operator+=(pl& l, const pl& r) { return l = {l.f+r.f,l.s+r.s}; }
 
int N;
vpi hei;
 
void checkmn(ll& x, ll y) { x = min(x,y); }
 
struct RMQ {
    int mx[SZ][21];
    
    int bet(int a, int b) {
      return hei[a] > hei[b] ? a : b;
    }
 
    RMQ() {
        F0R(i,N) mx[i][0] = i;
        FOR(j,1,21) F0R(i,N-(1<<j)+1) 
          mx[i][j] = bet(mx[i][j-1],mx[i+(1<<(j-1))][j-1]);
    }
    
    int query(int L, int R) {
        int x = 31-__builtin_clz(R-L+1);
        return bet(mx[L][x],mx[R-(1<<x)+1][x]);
    }
};
 
RMQ RM;
 
ll ans[SZ];
vector<array<int,3>> tmp[SZ];
 
struct line {
    int s,e;
    ll m,b;
    line() {}
    line(int _s, int _e, ll _m, ll _b) { s = _s, e = _e, m = _m, b = _b; }
    ll eval(int x) { return m*x+b; }
};

line d[SZ];

struct lineContain {
    int s,e;
    ll lazy = 0;
    lineContain(int _s, int _e) {
        s = _s, e = _e;
    }
    ll evalBack() {
        if (!size()) return 0;
        return d[e].eval(d[e].e)+lazy;
    }
    line front() {
        line l = d[s]; l.b += lazy;
        return l;
    }
    line back() {
        line l = d[e]; l.b += lazy;
        return l;
    }
    line pop_front() {
        line l = front(); s ++; 
        return l;
    }
    line pop_back() {
        line l = back(); e --;
        return l;
    }
    ll get(int m) {
        if (size() == 0 || m < d[s].s) return 0;
        int lo = s, hi = e;
        while (lo < hi) {
            int mid = (lo+hi+1)/2;
            if (d[mid].s <= m) lo = mid;
            else hi = mid-1;
        }
        return d[lo].eval(m)+lazy;
    }
    ll evalFront(ll x) {
        return d[s].eval(x)+lazy;
    }
    void push_back(line l) {
        l.b -= lazy;
        d[++e] = l;
    }
    void push_front(line l) {
        l.b -= lazy;
        d[--s] = l;
    }
    int size() { return e-s+1; }
};

lineContain divi(int lo, int hi) {
    if (lo > hi) return lineContain(lo,lo-1);
    
    ll x = RM.query(lo,hi); 
    auto l = divi(lo,x-1); auto r = divi(x+1,hi); 
    for (auto y: tmp[x]) checkmn(ans[y[2]],(ll)(x-y[0]+1)*hei[x].f+r.get(y[1]));
    
    r.lazy += (x-lo+1)*hei[x].f;
    int right = x;
    ll lst = l.evalBack();
    
    while (sz(r)) {
        ll e = r.front().e;
        ll a = lst+(e-x+1)*hei[x].f;
        ll b = r.evalFront(e);
        if (a <= b) {
            right = e; r.pop_front();
            continue;
        } else {
            ll s = r.front().s;
            while (s < e) {
                ll m = (s+e)/2;
                a = lst+(m-x+1)*hei[x].f;
                b = r.evalFront(m);
                if (a <= b) s = m+1;
                else e = m;
            }
            right = s-1;
            auto a = r.pop_front(); a.s = s; r.push_front(a);
            break;
            // binary search
        }
    }
    
    
    l.pb(line(x,right,hei[x].f,lst-hei[x].f*(x-1)));
    if (sz(l) > sz(r)) {
        while (sz(r)) l.pb(r.pop_front());
        return l;
    } else {
        while (sz(l)) r.push_front(l.pop_back());
        return r;
    }
}
 
void solve(vi L, vi R) {
    RM = RMQ(); 
    vi h; F0R(i,N) h.pb(i);
    sort(all(h),[](int a, int b) { return hei[a] < hei[b]; });
    F0R(i,SZ) tmp[i].clear();
    
    F0R(i,sz(L)) tmp[RM.query(L[i],R[i])].pb({L[i],R[i],i});
    divi(0,N-1);
}
 
std::vector<long long> minimum_costs(std::vector<int> H, std::vector<int> L,
                                     std::vector<int> R) {
    N = sz(H);
    F0R(i,N) hei.pb({H[i],i});
    F0R(i,sz(L)) ans[i] = INF;
 
    solve(L,R);
 
    reverse(all(hei));
    F0R(i,sz(L)) {
        L[i] = sz(H)-1-L[i];
        R[i] = sz(H)-1-R[i];
        swap(L[i],R[i]);
    }
    
    // cout << "\n";
    solve(L,R);
    vl ret; F0R(i,sz(L)) ret.pb(ans[i]);
    return ret;
}
 /*
int main() {
    int N,Q; cin >> N >> Q;// N = Q = 750000;
    vi H(N), L(Q), R(Q);
    F0R(i,N) {
        // H[i] = rand() % 1000000000;
        cin >> H[i];
    }
    F0R(i,Q) {
        L[i] = rand() % N, R[i] = rand() % N;
        if (L[i] > R[i]) swap(L[i],R[i]);
        cin >> L[i] >> R[i];
    }
    vl C = minimum_costs(H, L, R);
    for (auto a: C) cout << a << " ";
}*/
# Verdict Execution time Memory Grader output
1 Correct 108 ms 79752 KB Output is correct
2 Correct 109 ms 80120 KB Output is correct
3 Correct 109 ms 80056 KB Output is correct
4 Correct 109 ms 80148 KB Output is correct
5 Correct 110 ms 80152 KB Output is correct
6 Correct 108 ms 80364 KB Output is correct
7 Correct 110 ms 80108 KB Output is correct
8 Correct 107 ms 80332 KB Output is correct
9 Correct 107 ms 80236 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 108 ms 79752 KB Output is correct
2 Correct 109 ms 80120 KB Output is correct
3 Correct 109 ms 80056 KB Output is correct
4 Correct 109 ms 80148 KB Output is correct
5 Correct 110 ms 80152 KB Output is correct
6 Correct 108 ms 80364 KB Output is correct
7 Correct 110 ms 80108 KB Output is correct
8 Correct 107 ms 80332 KB Output is correct
9 Correct 107 ms 80236 KB Output is correct
10 Correct 113 ms 80784 KB Output is correct
11 Correct 112 ms 80760 KB Output is correct
12 Correct 114 ms 80736 KB Output is correct
13 Correct 113 ms 80860 KB Output is correct
14 Correct 115 ms 81056 KB Output is correct
15 Correct 114 ms 80760 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 107 ms 79764 KB Output is correct
2 Correct 149 ms 84844 KB Output is correct
3 Correct 311 ms 106128 KB Output is correct
4 Correct 264 ms 99664 KB Output is correct
5 Correct 311 ms 106320 KB Output is correct
6 Correct 295 ms 106964 KB Output is correct
7 Correct 289 ms 109136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 107 ms 79764 KB Output is correct
2 Correct 149 ms 84844 KB Output is correct
3 Correct 311 ms 106128 KB Output is correct
4 Correct 264 ms 99664 KB Output is correct
5 Correct 311 ms 106320 KB Output is correct
6 Correct 295 ms 106964 KB Output is correct
7 Correct 289 ms 109136 KB Output is correct
8 Correct 289 ms 100376 KB Output is correct
9 Correct 245 ms 100204 KB Output is correct
10 Correct 289 ms 100464 KB Output is correct
11 Correct 270 ms 99528 KB Output is correct
12 Correct 254 ms 99480 KB Output is correct
13 Correct 280 ms 99928 KB Output is correct
14 Correct 294 ms 106460 KB Output is correct
15 Correct 249 ms 99620 KB Output is correct
16 Correct 288 ms 106396 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 108 ms 79752 KB Output is correct
2 Correct 109 ms 80120 KB Output is correct
3 Correct 109 ms 80056 KB Output is correct
4 Correct 109 ms 80148 KB Output is correct
5 Correct 110 ms 80152 KB Output is correct
6 Correct 108 ms 80364 KB Output is correct
7 Correct 110 ms 80108 KB Output is correct
8 Correct 107 ms 80332 KB Output is correct
9 Correct 107 ms 80236 KB Output is correct
10 Correct 113 ms 80784 KB Output is correct
11 Correct 112 ms 80760 KB Output is correct
12 Correct 114 ms 80736 KB Output is correct
13 Correct 113 ms 80860 KB Output is correct
14 Correct 115 ms 81056 KB Output is correct
15 Correct 114 ms 80760 KB Output is correct
16 Correct 107 ms 79764 KB Output is correct
17 Correct 149 ms 84844 KB Output is correct
18 Correct 311 ms 106128 KB Output is correct
19 Correct 264 ms 99664 KB Output is correct
20 Correct 311 ms 106320 KB Output is correct
21 Correct 295 ms 106964 KB Output is correct
22 Correct 289 ms 109136 KB Output is correct
23 Correct 289 ms 100376 KB Output is correct
24 Correct 245 ms 100204 KB Output is correct
25 Correct 289 ms 100464 KB Output is correct
26 Correct 270 ms 99528 KB Output is correct
27 Correct 254 ms 99480 KB Output is correct
28 Correct 280 ms 99928 KB Output is correct
29 Correct 294 ms 106460 KB Output is correct
30 Correct 249 ms 99620 KB Output is correct
31 Correct 288 ms 106396 KB Output is correct
32 Correct 1729 ms 231472 KB Output is correct
33 Correct 1498 ms 227972 KB Output is correct
34 Correct 1926 ms 233652 KB Output is correct
35 Correct 1862 ms 231736 KB Output is correct
36 Correct 1504 ms 233904 KB Output is correct
37 Correct 1863 ms 234168 KB Output is correct
38 Correct 2267 ms 283956 KB Output is correct
39 Correct 2216 ms 284036 KB Output is correct
40 Correct 1862 ms 240552 KB Output is correct
41 Correct 2593 ms 324788 KB Output is correct
42 Correct 2701 ms 323880 KB Output is correct
43 Correct 2763 ms 323772 KB Output is correct
44 Correct 2569 ms 283636 KB Output is correct