Submission #826092

# Submission time Handle Problem Language Result Execution time Memory
826092 2023-08-15T10:21:11 Z becaido Rarest Insects (IOI22_insects) C++17
86.24 / 100
67 ms 340 KB
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx,popcnt,sse4,abm")
#include <bits/stdc++.h>
using namespace std;

#ifndef WAIMAI
#include "insects.h"
#endif

#ifdef WAIMAI
#define debug(HEHE...) cout << "[" << #HEHE << "] : ", dout(HEHE)
void dout() {cout << '\n';}
template<typename T, typename...U>
void dout(T t, U...u) {cout << t << (sizeof...(u) ? ", " : ""), dout(u...);}
#else
#define debug(...) 7122
#endif

#define ll long long
#define Waimai ios::sync_with_stdio(false), cin.tie(0)
#define FOR(x,a,b) for (int x = a, I = b; x <= I; x++)
#define pb emplace_back
#define F first
#define S second

#ifdef WAIMAI
void move_inside(int i);
void move_outside(int i);
int press_button();
int min_cardinality(int N);
#endif

const int SIZE = 2005;
const int K = 8;
const int S = K;

map<int, int> mp;
int id[SIZE], tag[SIZE], in[SIZE];

int min_cardinality(int N) {
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    iota(id, id + N, 0);
    shuffle(id, id + N, rng);
    int sz = 0;
    FOR (i, 0, N - 1) {
        move_inside(id[i]);
        int mx = press_button();
        if (mx == 2) move_outside(id[i]);
        else {
            in[id[i]] = 1;
            tag[id[i]] = 1;
            sz++;
        }
    }
    mp[1] = sz;
    if (sz == N) return 1;

    auto cal = [&](int lim) {
        if (mp.count(lim)) return mp[lim];
        int cnt = 0;
        FOR (i, 0, N - 1) if (in[id[i]] && tag[id[i]] > lim) {
            move_outside(id[i]);
            in[id[i]] = 0;
        }
        int need = lim * sz, can = 0;
        FOR (i, 0, N - 1) can += !in[id[i]];
        need -= N - can;
        FOR (i, 0, N - 1) if (!in[id[i]]) {
            if (can < need) break;
            can--;
            move_inside(id[i]);
            int mx = press_button();
            if (mx > lim) move_outside(id[i]);
            else {
                need--;
                in[id[i]] = 1;
                tag[id[i]] = mx;
            }
        }
        FOR (i, 0, N - 1) cnt += in[id[i]];
        return mp[lim] = cnt;
    };

    int l = 1, r = min(S, N / sz);
    while (r < N / sz && cal(r) == r * sz) {
        l = r;
        r *= K;
        r = min(r, N / sz);
    }
    while (l < r) {
        int mid = (l + r) / 2 + 1;
        if (cal(mid) == mid * sz) l = mid;
        else r = mid - 1;
    }
    return l;
}

/*
in1
6
5 8 9 5 9 9
out1
1
7
*/

#ifdef WAIMAI
static inline constexpr int kMaxQueries = 40000;

static int N;
// Insect types are compressed to colors in the range [0, N).
static vector<int> color;
static vector<bool> in_box;

static vector<int> color_occurrences;
static multiset<int> max_occurrences;

static vector<int> op_counter(3, 0);

static inline void protocol_violation(string message) {
  printf("Protocol Violation: %s\n", message.c_str());
  exit(0);
}

void move_inside(int i) {
  if (i < 0 || i >= N) {
    protocol_violation("invalid parameter");
  }
  ++op_counter[0];
  if (op_counter[0] > kMaxQueries) {
    protocol_violation("too many calls");
  }
  if (!in_box[i]) {
    in_box[i] = true;
    max_occurrences.erase(max_occurrences.find(color_occurrences[color[i]]));
    ++color_occurrences[color[i]];
    max_occurrences.insert(color_occurrences[color[i]]);
  }
}

void move_outside(int i) {
  if (i < 0 || i >= N) {
    protocol_violation("invalid parameter");
  }
  ++op_counter[1];
  if (op_counter[1] > kMaxQueries) {
    protocol_violation("too many calls");
  }
  if (in_box[i]) {
    in_box[i] = false;
    max_occurrences.erase(max_occurrences.find(color_occurrences[color[i]]));
    --color_occurrences[color[i]];
    max_occurrences.insert(color_occurrences[color[i]]);
  }
}

int press_button() {
  ++op_counter[2];
  if (op_counter[2] > kMaxQueries) {
    protocol_violation("too many calls");
  }
  return *(max_occurrences.rbegin());
}

int main() {
  assert(1 == scanf("%d", &N));
  color.resize(N);
  in_box.assign(N, false);

  map<int, int> type_to_color;
  for (int i = 0; i < N; ++i) {
    int Ti;
    assert(1 == scanf("%d", &Ti));
    if (type_to_color.find(Ti) == type_to_color.end()) {
      int new_color = type_to_color.size();
      type_to_color[Ti] = new_color;
      max_occurrences.insert(0);
    }
    color[i] = type_to_color[Ti];
  }

  color_occurrences.assign(type_to_color.size(), 0);

  int answer = min_cardinality(N);
  int Q = *max_element(op_counter.begin(), op_counter.end());
  printf("%d\n", answer);
  printf("%d\n", Q);
  return 0;
}
#endif
# Verdict Execution time Memory Grader output
1 Correct 0 ms 312 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 0 ms 208 KB Output is correct
4 Correct 1 ms 208 KB Output is correct
5 Correct 0 ms 312 KB Output is correct
6 Correct 6 ms 308 KB Output is correct
7 Correct 2 ms 208 KB Output is correct
8 Correct 4 ms 208 KB Output is correct
9 Correct 5 ms 208 KB Output is correct
10 Correct 6 ms 208 KB Output is correct
11 Correct 2 ms 208 KB Output is correct
12 Correct 8 ms 208 KB Output is correct
13 Correct 5 ms 336 KB Output is correct
14 Correct 4 ms 208 KB Output is correct
15 Correct 6 ms 308 KB Output is correct
16 Correct 5 ms 208 KB Output is correct
17 Correct 4 ms 308 KB Output is correct
18 Correct 8 ms 208 KB Output is correct
19 Correct 6 ms 208 KB Output is correct
20 Correct 3 ms 208 KB Output is correct
21 Correct 2 ms 208 KB Output is correct
22 Correct 2 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 312 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 0 ms 208 KB Output is correct
4 Correct 1 ms 208 KB Output is correct
5 Correct 0 ms 312 KB Output is correct
6 Correct 6 ms 308 KB Output is correct
7 Correct 2 ms 208 KB Output is correct
8 Correct 4 ms 208 KB Output is correct
9 Correct 5 ms 208 KB Output is correct
10 Correct 6 ms 208 KB Output is correct
11 Correct 2 ms 208 KB Output is correct
12 Correct 8 ms 208 KB Output is correct
13 Correct 5 ms 336 KB Output is correct
14 Correct 4 ms 208 KB Output is correct
15 Correct 6 ms 308 KB Output is correct
16 Correct 5 ms 208 KB Output is correct
17 Correct 4 ms 308 KB Output is correct
18 Correct 8 ms 208 KB Output is correct
19 Correct 6 ms 208 KB Output is correct
20 Correct 3 ms 208 KB Output is correct
21 Correct 2 ms 208 KB Output is correct
22 Correct 2 ms 208 KB Output is correct
23 Correct 34 ms 324 KB Output is correct
24 Correct 5 ms 208 KB Output is correct
25 Correct 21 ms 208 KB Output is correct
26 Correct 35 ms 208 KB Output is correct
27 Correct 38 ms 208 KB Output is correct
28 Correct 7 ms 312 KB Output is correct
29 Correct 23 ms 208 KB Output is correct
30 Correct 31 ms 208 KB Output is correct
31 Correct 31 ms 336 KB Output is correct
32 Correct 29 ms 208 KB Output is correct
33 Correct 26 ms 208 KB Output is correct
34 Correct 23 ms 208 KB Output is correct
35 Correct 23 ms 308 KB Output is correct
36 Correct 24 ms 208 KB Output is correct
37 Correct 18 ms 336 KB Output is correct
38 Correct 33 ms 208 KB Output is correct
39 Correct 25 ms 208 KB Output is correct
40 Correct 12 ms 208 KB Output is correct
41 Correct 7 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 0 ms 208 KB Output is correct
3 Correct 0 ms 208 KB Output is correct
4 Correct 1 ms 208 KB Output is correct
5 Correct 1 ms 208 KB Output is correct
6 Correct 0 ms 208 KB Output is correct
7 Partially correct 57 ms 208 KB Output is partially correct
8 Correct 12 ms 208 KB Output is correct
9 Partially correct 50 ms 208 KB Output is partially correct
10 Partially correct 54 ms 304 KB Output is partially correct
11 Partially correct 55 ms 208 KB Output is partially correct
12 Correct 17 ms 208 KB Output is correct
13 Partially correct 51 ms 208 KB Output is partially correct
14 Partially correct 63 ms 208 KB Output is partially correct
15 Partially correct 50 ms 312 KB Output is partially correct
16 Partially correct 62 ms 340 KB Output is partially correct
17 Partially correct 63 ms 208 KB Output is partially correct
18 Partially correct 55 ms 208 KB Output is partially correct
19 Partially correct 44 ms 208 KB Output is partially correct
20 Partially correct 49 ms 208 KB Output is partially correct
21 Partially correct 62 ms 208 KB Output is partially correct
22 Partially correct 51 ms 208 KB Output is partially correct
23 Partially correct 48 ms 208 KB Output is partially correct
24 Correct 35 ms 312 KB Output is correct
25 Correct 17 ms 208 KB Output is correct
26 Correct 14 ms 208 KB Output is correct
27 Partially correct 46 ms 208 KB Output is partially correct
28 Partially correct 25 ms 208 KB Output is partially correct
29 Correct 33 ms 208 KB Output is correct
30 Correct 36 ms 208 KB Output is correct
31 Partially correct 52 ms 208 KB Output is partially correct
32 Partially correct 59 ms 208 KB Output is partially correct
33 Partially correct 64 ms 208 KB Output is partially correct
34 Partially correct 56 ms 208 KB Output is partially correct
35 Partially correct 51 ms 208 KB Output is partially correct
36 Partially correct 41 ms 208 KB Output is partially correct
37 Partially correct 59 ms 304 KB Output is partially correct
38 Partially correct 67 ms 208 KB Output is partially correct
39 Correct 40 ms 208 KB Output is correct
40 Correct 32 ms 208 KB Output is correct
41 Partially correct 50 ms 208 KB Output is partially correct
42 Partially correct 44 ms 208 KB Output is partially correct
43 Partially correct 18 ms 208 KB Output is partially correct
44 Partially correct 50 ms 208 KB Output is partially correct
45 Partially correct 62 ms 208 KB Output is partially correct
46 Correct 11 ms 336 KB Output is correct
47 Correct 13 ms 208 KB Output is correct
48 Correct 13 ms 208 KB Output is correct