Submission #817215

# Submission time Handle Problem Language Result Execution time Memory
817215 2023-08-09T10:40:48 Z penguinman Fountain Parks (IOI21_parks) C++17
45 / 100
540 ms 53824 KB
#include "parks.h"

#include <bits/stdc++.h>

using std::cin;
using std::cout;
using std::vector;
using std::string;
using ll = int;
using vi = vector<ll>;
using vii = vector<vi>;
using pii = std::pair<ll,ll>;
using std::endl;

#define rep(i,j,k) for(ll i=ll(j); i<ll(k); i++)
#define REP(i,j,k) for(ll i=ll(j); i<=ll(k); i++)
#define per(i,j,k) for(ll i=ll(j); i>=ll(k); i--)
#define ln "\n"
#define pb emplace_back
#define mp std::make_pair
#define all(a) a.begin(),a.end()

int construct_roads(std::vector<int> x, std::vector<int> y) {
    {
        vi u,v,a,b;
        vi par(x.size());
        rep(i,0,x.size()) par[i] = i;
        std::function<ll(ll)> root = [&](ll now){
            if(par[now] == now) return now;
            return par[now] = root(par[now]);
        };
        std::map<ll,std::map<ll,ll>> X, Y;
        rep(i,0,x.size()) X[x[i]][y[i]] = Y[y[i]][x[i]] = i;
        for(auto V: X){
            for(auto el: V.second){
                if(V.second.count(el.first+2)){
                    ll now = el.second;
                    ll next = V.second[el.first+2];
                    if(root(now) == root(next)) continue;
                    par[root(now)] = root(next);
                    vi P = {1,-1};
                    rep(i,0,2){
                        ll ry = el.first+1;
                        ll rx = V.first+P[i];
                        if((rx+ry)%4 == 0){
                            u.pb(now);
                            v.pb(next);
                            a.pb(rx);
                            b.pb(ry);
                        }
                    }
                }
            }
        }
        for(auto V: Y){
            for(auto el: V.second){
                if(V.second.count(el.first+2)){
                    ll now = el.second;
                    ll next = V.second[el.first+2];
                    if(root(now) == root(next)) continue;
                    par[root(now)] = root(next);
                    vi P = {1,-1};
                    rep(i,0,2){
                        ll rx = el.first+1;
                        ll ry = V.first+P[i];
                        if((rx+ry)%4 == 2){
                            u.pb(now);
                            v.pb(next);
                            a.pb(rx);
                            b.pb(ry);
                        }
                    }
                }
            }
        }
        if(u.size()+1 == x.size()){
            build(u,v,a,b);
            return 1;
        }
    }
    return 0;
    if(*max_element(all(x)) <= 6){
        vector<std::map<ll,ll>> X(7);
        rep(i,0,x.size()){
            X[x[i]][y[i]] = i;
        }
        vi u,v,a,b;
        vi par(x.size());
        rep(i,0,x.size()) par[i] = i;
        std::function<ll(ll)> root = [&](ll now){
            if(par[now] == now) return now;
            return par[now] = root(par[now]);
        };
        for(auto el: X[2]){
            if(X[2].count(el.first+2)){
                u.pb(el.second);
                ll next = X[2][el.first+2];
                v.pb(next);
                a.pb(1);
                b.pb(el.first+1);
                par[root(el.second)] = root(next);
            }
        }
        for(auto el: X[6]){
            if(X[6].count(el.first+2)){
                u.pb(el.second);
                ll next = X[6][el.first+2];
                v.pb(next);
                a.pb(7);
                b.pb(el.first+1);
                par[root(el.second)] = root(next);
            }
        }
        std::set<pii> used;
        for(auto el: X[4]){
            if(X[4].count(el.first+2)){
                ll next = X[4][el.first+2];
                par[root(next)] = root(el.second);
                ll rx = -1, ry = -1;
                if(el.first%4 == 0) rx = 3, ry = el.first+1;
                if(el.first%4 == 2) rx = 5, ry = el.first+1;
                used.insert(mp(rx, ry));
                u.pb(el.second);
                v.pb(next);
                a.pb(rx);
                b.pb(ry);
            }
        }
        for(auto el: X[4]){
            if(X[2].count(el.first)){
                ll next = X[2][el.first];
                if(root(next) != root(el.second)){
                    par[root(next)] = root(el.second);
                    u.pb(el.second);
                    v.pb(next);
                    ll rx = -1, ry = -1;
                    if(!used.count(mp(3,el.first-1))) rx = 3, ry = el.first-1;
                    if(!used.count(mp(3,el.first+1))) rx = 3, ry = el.first+1;
                    assert(rx != -1);
                    a.pb(rx);
                    b.pb(ry);
                    used.insert(mp(rx, ry));
                }
            }
            if(X[6].count(el.first)){
                ll next = X[6][el.first];
                if(root(next) != root(el.second)){
                    par[root(next)] = root(el.second);
                    u.pb(el.second);
                    v.pb(next);
                    ll rx = -1, ry = -1;
                    if(!used.count(mp(5,el.first-1))) rx = 5, ry = el.first-1;
                    if(!used.count(mp(5,el.first+1))) rx = 5, ry = el.first+1;
                    assert(rx != -1);
                    a.pb(rx);
                    b.pb(ry);
                    used.insert(mp(rx, ry));
                }
            }
        }
        if(u.size()+1 == x.size()){
            build(u,v,a,b);
            return 1;
        }
        else return 0;
    }
    std::map<pii,ll> xy;
    std::map<pii,ll> rev;
    rep(i,0,x.size()) xy[mp(x[i],y[i])] = i;
    ll cnt__ = 0;
    rep(i,0,x.size()){
        vi P = {2,0}, Q = {0,2};
        vi R = {0,1}, S = {1,0};
        rep(j,0,2){
            if(xy.count(mp(x[i]+P[j], y[i]+Q[j]))){
                ll mx = x[i]+P[j]/2;
                ll my = y[i]+Q[j]/2;
                rev[mp(mx+R[j], my+S[j])] = rev[mp(mx-R[j],my-S[j])] = 0;
                cnt__++;
            }
        }
    }
    ll N = 0;
    vi rx, ry;
    for(auto &el: rev){
        el.second = N++;
        rx.pb(el.first.first);
        ry.pb(el.first.second);
    }
    vii edge(N);
    vii eu(N), ev(N);
    rep(i,0,x.size()){
        vi P = {2,0}, Q = {0,2};
        vi R = {0,1}, S = {1,0};
        rep(j,0,2){
            if(xy.count(mp(x[i]+P[j], y[i]+Q[j]))){
                ll mx = x[i]+P[j]/2;
                ll my = y[i]+Q[j]/2;
                ll nu = rev[mp(mx+R[j], my+S[j])];
                ll nv = rev[mp(mx-R[j],my-S[j])];
                ll nxy = xy[mp(x[i]+P[j], y[i]+Q[j])];
                edge[nu].pb(nv);
                eu[nu].pb(i);
                ev[nu].pb(nxy);
                edge[nv].pb(nu);
                eu[nv].pb(i);
                ev[nv].pb(nxy);
            }
        }
    }
    vi cnt(N);
    rep(i,0,N) cnt[i] = edge[i].size();
    vi u,v,a,b;
    rep(k,0,N){
        if(cnt[k] != 1) continue;
        cnt[k]--;
        ll now = k;
        while(true){
            ll nex = -1;
            rep(i,0,edge[now].size()){
                ll next = edge[now][i];
                if(cnt[next] == 0) continue;
                u.pb(eu[now][i]);
                v.pb(ev[now][i]);
                a.pb(rx[now]);
                b.pb(ry[now]);
                cnt[next]--;
                if(cnt[next] == 1){
                    cnt[next]--;
                    nex = next;
                }
            }
            if(nex == -1) break;
            now = nex;
        }
    }
    rep(i,0,N){
        if(cnt[i] > 2) return 0;
    }
    rep(i,0,N){
        assert(cnt[i] == 0 || cnt[i] == 2);
        if(cnt[i] == 0) continue;
        cnt[i] = 0;
        ll now = i;
        while(true){
            ll val = -1;
            rep(j,0,edge[now].size()){
                ll next = edge[now][j];
                if(cnt[next] == 0) continue;
                u.pb(eu[now][j]);
                v.pb(ev[now][j]);
                a.pb(rx[now]);
                b.pb(ry[now]);
                val = cnt[next];
                cnt[next] = 0;
                now = next;
                break;
            }
            if(val == -1) break;
        }
        rep(j,0,edge[now].size()){
            ll next = edge[now][j];
            if(next != i) continue;
            u.pb(eu[now][j]);
            v.pb(ev[now][j]);
            a.pb(rx[now]);
            b.pb(ry[now]);
        }
    }
    build(u,v,a,b);
    return 1;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 180 ms 27360 KB Output is correct
10 Correct 9 ms 3108 KB Output is correct
11 Correct 57 ms 14964 KB Output is correct
12 Correct 14 ms 4440 KB Output is correct
13 Correct 33 ms 12428 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 724 KB Output is correct
16 Correct 193 ms 27404 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 180 ms 27360 KB Output is correct
10 Correct 9 ms 3108 KB Output is correct
11 Correct 57 ms 14964 KB Output is correct
12 Correct 14 ms 4440 KB Output is correct
13 Correct 33 ms 12428 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 724 KB Output is correct
16 Correct 193 ms 27404 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Incorrect 0 ms 212 KB Tree @(3, 5) appears more than once: for edges on positions 0 and 1
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 180 ms 27360 KB Output is correct
10 Correct 9 ms 3108 KB Output is correct
11 Correct 57 ms 14964 KB Output is correct
12 Correct 14 ms 4440 KB Output is correct
13 Correct 33 ms 12428 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 724 KB Output is correct
16 Correct 193 ms 27404 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Incorrect 0 ms 212 KB Tree @(3, 5) appears more than once: for edges on positions 0 and 1
19 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 180 ms 27360 KB Output is correct
10 Correct 9 ms 3108 KB Output is correct
11 Correct 57 ms 14964 KB Output is correct
12 Correct 14 ms 4440 KB Output is correct
13 Correct 33 ms 12428 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 724 KB Output is correct
16 Correct 193 ms 27404 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 540 ms 53776 KB Output is correct
21 Correct 426 ms 44200 KB Output is correct
22 Correct 397 ms 44216 KB Output is correct
23 Correct 390 ms 37964 KB Output is correct
24 Correct 278 ms 24816 KB Output is correct
25 Correct 361 ms 27940 KB Output is correct
26 Correct 295 ms 27980 KB Output is correct
27 Correct 384 ms 34300 KB Output is correct
28 Correct 390 ms 34320 KB Output is correct
29 Correct 362 ms 34304 KB Output is correct
30 Correct 382 ms 34324 KB Output is correct
31 Correct 0 ms 212 KB Output is correct
32 Correct 17 ms 3156 KB Output is correct
33 Correct 176 ms 31608 KB Output is correct
34 Correct 428 ms 53824 KB Output is correct
35 Correct 10 ms 1876 KB Output is correct
36 Correct 48 ms 7636 KB Output is correct
37 Correct 106 ms 14796 KB Output is correct
38 Correct 120 ms 14424 KB Output is correct
39 Correct 150 ms 19624 KB Output is correct
40 Correct 209 ms 24708 KB Output is correct
41 Correct 279 ms 29996 KB Output is correct
42 Correct 398 ms 35288 KB Output is correct
43 Correct 0 ms 212 KB Output is correct
44 Correct 1 ms 300 KB Output is correct
45 Correct 0 ms 212 KB Output is correct
46 Correct 0 ms 212 KB Output is correct
47 Correct 0 ms 212 KB Output is correct
48 Correct 0 ms 212 KB Output is correct
49 Correct 0 ms 212 KB Output is correct
50 Correct 1 ms 320 KB Output is correct
51 Correct 1 ms 300 KB Output is correct
52 Correct 1 ms 212 KB Output is correct
53 Correct 0 ms 212 KB Output is correct
54 Correct 3 ms 724 KB Output is correct
55 Correct 3 ms 908 KB Output is correct
56 Correct 164 ms 24176 KB Output is correct
57 Correct 311 ms 35984 KB Output is correct
58 Correct 276 ms 36012 KB Output is correct
59 Correct 1 ms 212 KB Output is correct
60 Correct 1 ms 212 KB Output is correct
61 Correct 1 ms 212 KB Output is correct
62 Correct 398 ms 44320 KB Output is correct
63 Correct 439 ms 49020 KB Output is correct
64 Correct 406 ms 46600 KB Output is correct
65 Correct 4 ms 1108 KB Output is correct
66 Correct 8 ms 1876 KB Output is correct
67 Correct 171 ms 22660 KB Output is correct
68 Correct 280 ms 34044 KB Output is correct
69 Correct 433 ms 45024 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 180 ms 27360 KB Output is correct
10 Correct 9 ms 3108 KB Output is correct
11 Correct 57 ms 14964 KB Output is correct
12 Correct 14 ms 4440 KB Output is correct
13 Correct 33 ms 12428 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 724 KB Output is correct
16 Correct 193 ms 27404 KB Output is correct
17 Correct 410 ms 44952 KB Output is correct
18 Correct 466 ms 44972 KB Output is correct
19 Correct 405 ms 41896 KB Output is correct
20 Correct 366 ms 32008 KB Output is correct
21 Correct 322 ms 28696 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 35 ms 5692 KB Output is correct
24 Correct 17 ms 3264 KB Output is correct
25 Correct 68 ms 10712 KB Output is correct
26 Correct 165 ms 17792 KB Output is correct
27 Correct 150 ms 17760 KB Output is correct
28 Correct 189 ms 22304 KB Output is correct
29 Correct 220 ms 26636 KB Output is correct
30 Correct 310 ms 30676 KB Output is correct
31 Correct 376 ms 35144 KB Output is correct
32 Correct 376 ms 46116 KB Output is correct
33 Correct 392 ms 49072 KB Output is correct
34 Correct 4 ms 1236 KB Output is correct
35 Correct 8 ms 2132 KB Output is correct
36 Correct 175 ms 22040 KB Output is correct
37 Correct 265 ms 33392 KB Output is correct
38 Correct 426 ms 43992 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 180 ms 27360 KB Output is correct
10 Correct 9 ms 3108 KB Output is correct
11 Correct 57 ms 14964 KB Output is correct
12 Correct 14 ms 4440 KB Output is correct
13 Correct 33 ms 12428 KB Output is correct
14 Correct 1 ms 468 KB Output is correct
15 Correct 2 ms 724 KB Output is correct
16 Correct 193 ms 27404 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Incorrect 0 ms 212 KB Tree @(3, 5) appears more than once: for edges on positions 0 and 1
19 Halted 0 ms 0 KB -