Submission #811214

# Submission time Handle Problem Language Result Execution time Memory
811214 2023-08-07T02:35:26 Z maomao90 Ancient Machine 2 (JOI23_ancient2) C++17
100 / 100
78 ms 536 KB
#include "ancient2.h"
#include <bits/stdc++.h>
using namespace std;

#define REP(i, j, k) for (int i = (j); i < (k); i++)
#define RREP(i, j, k) for (int i = (j); i >= (k); i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef unsigned long long ull;
typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ll> vll;
typedef vector<ii> vii;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if (0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 1001;
const int MAXP = 51;

mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count());

namespace {
	int n;
	bool findPrefix(int p) {
		int m = p + 3;
		vi a(m);
		iota(ALL(a), 1);
		a[p + 1] = p + 1;
		a[p + 2] = p + 2;
		vi b = a;
		a[p] = p + 1;
		b[p] = p + 2;
		int r = Query(m, a, b);
		return r == p + 2;
	}
	bool findSuffix(string s) {
		s = "1" + s;
		int n = SZ(s);
		s += "?";
		int m = n + 1;
		vi a(m), b(m);
		string ps = "";
		REP (i, 0, n + 1) {
			auto get = [&] (char c) {
				string ts = ps + c;
				REP (j, 0, SZ(ts)) {
					bool pos = 1;
					REP (k, 0, SZ(ts) - j) {
						if (ts[j + k] != s[k]) {
							pos = 0;
						}
					}
					if (pos) {
						return SZ(ts) - j;
					}
				}
				return 0;
			};
			a[i] = get('0');
			b[i] = get('1');
			ps += s[i];
		}
		int r = Query(m, a, b);
		return r == m - 1;
	}
	bool findPeriod(int p, int q) {
		int m = p + p;
		vi a(m);
		iota(a.begin(), a.begin() + p, 1);
		iota(a.begin() + p, a.begin() + m, p + 1);
		a[p - 1] = 0;
		a[m - 1] = p;
		vi b = a;
		b[q] += p;
		b[q + p] -= p;
		int r = Query(m, a, b);
		return r >= p;
	}
	bitset<MAXN> basis[MAXN];
	bool insert(bitset<MAXN> bs) {
		REP (i, 0, MAXN) {
			if (!bs[i]) {
				continue;
			}
			if (basis[i].none()) {
				basis[i] = bs;
				return 1;
			}
			bs ^= basis[i];
		}
		return 0;
	}
	int query(bitset<MAXN> bs) {
		REP (i, 0, n) {
			if (!bs[i]) {
				continue;
			}
			if (basis[i].none()) {
				return -1;
			}
			bs ^= basis[i];
		}
		return bs[n];
	}
}

string Solve(int N) {
	n = N;
	string ans(n, '0');
	int rem = 1000;
	REP (i, 0, min(n, 100)) {
		rem--;
		ans[i] = findPrefix(i) + '0';
		bitset<MAXN> bs;
		bs[i] = 1;
		bs[n] = ans[i] - '0';
		insert(bs);
	}
	string suf = "";
	RREP (i, n - 1, max(n - 101, 1)) {
		rem--;
		ans[i] = findSuffix(suf) + '0';
		suf = ans[i] + suf;
		bitset<MAXN> bs;
		bs[i] = 1;
		bs[n] = ans[i] - '0';
		insert(bs);
	}
	REP (_, 0, rem) {
		int p = rnd() % MAXP + 1, q = rnd() % p;
		bitset<MAXN> bs;
		while (1) {
			bs.reset();
			for (int j = q; j < n; j += p) {
				bs[j] = 1;
			}
			if (query(bs) == -1) {
				break;
			}
			p = rnd() % MAXP + 1, q = rnd() % p;
		}
		bool b = findPeriod(p, q);
		bs[n] = b;
		insert(bs);
	}
	REP (i, min(n, 100), max(n - 101, 1)) {
		bitset<MAXN> bs;
		bs[i] = 1;
		ans[i] = query(bs) + '0';
	}
	return ans;
}
# Verdict Execution time Memory Grader output
1 Correct 57 ms 428 KB Output is correct
2 Correct 62 ms 436 KB Output is correct
3 Correct 53 ms 376 KB Output is correct
4 Correct 65 ms 432 KB Output is correct
5 Correct 55 ms 396 KB Output is correct
6 Correct 57 ms 396 KB Output is correct
7 Correct 49 ms 400 KB Output is correct
8 Correct 78 ms 504 KB Output is correct
9 Correct 61 ms 416 KB Output is correct
10 Correct 50 ms 388 KB Output is correct
11 Correct 57 ms 424 KB Output is correct
12 Correct 65 ms 392 KB Output is correct
13 Correct 56 ms 432 KB Output is correct
14 Correct 54 ms 404 KB Output is correct
15 Correct 52 ms 408 KB Output is correct
16 Correct 62 ms 536 KB Output is correct
17 Correct 50 ms 384 KB Output is correct
18 Correct 54 ms 336 KB Output is correct
19 Correct 49 ms 384 KB Output is correct
20 Correct 50 ms 372 KB Output is correct
21 Correct 48 ms 408 KB Output is correct
22 Correct 52 ms 388 KB Output is correct
23 Correct 56 ms 396 KB Output is correct
24 Correct 66 ms 436 KB Output is correct
25 Correct 65 ms 412 KB Output is correct
26 Correct 69 ms 432 KB Output is correct
27 Correct 65 ms 432 KB Output is correct
28 Correct 58 ms 424 KB Output is correct
29 Correct 50 ms 360 KB Output is correct
30 Correct 53 ms 416 KB Output is correct
31 Correct 52 ms 416 KB Output is correct
32 Correct 54 ms 420 KB Output is correct
33 Correct 62 ms 416 KB Output is correct
34 Correct 60 ms 388 KB Output is correct
35 Correct 51 ms 336 KB Output is correct
36 Correct 54 ms 404 KB Output is correct
37 Correct 51 ms 424 KB Output is correct
38 Correct 59 ms 428 KB Output is correct
39 Correct 75 ms 432 KB Output is correct
40 Correct 54 ms 376 KB Output is correct
41 Correct 57 ms 420 KB Output is correct
42 Correct 54 ms 400 KB Output is correct
43 Correct 55 ms 356 KB Output is correct
44 Correct 59 ms 384 KB Output is correct
45 Correct 54 ms 432 KB Output is correct
46 Correct 51 ms 376 KB Output is correct
47 Correct 64 ms 380 KB Output is correct
48 Correct 50 ms 388 KB Output is correct
49 Correct 53 ms 368 KB Output is correct
50 Correct 54 ms 400 KB Output is correct
51 Correct 55 ms 372 KB Output is correct
52 Correct 53 ms 404 KB Output is correct
53 Correct 69 ms 432 KB Output is correct
54 Correct 65 ms 428 KB Output is correct
55 Correct 51 ms 424 KB Output is correct
56 Correct 54 ms 420 KB Output is correct
57 Correct 63 ms 356 KB Output is correct
58 Correct 62 ms 412 KB Output is correct
59 Correct 53 ms 420 KB Output is correct
60 Correct 53 ms 336 KB Output is correct
61 Correct 52 ms 416 KB Output is correct
62 Correct 54 ms 388 KB Output is correct
63 Correct 60 ms 408 KB Output is correct