Submission #810110

# Submission time Handle Problem Language Result Execution time Memory
810110 2023-08-06T04:56:55 Z PixelCat Comparing Plants (IOI20_plants) C++14
100 / 100
1239 ms 175644 KB
#include "plants.h"
 
#ifdef NYAOWO
#include "grader.cpp"
#endif
 
#include <bits/stdc++.h>
#define For(i, a, b) for(int i = a; i <= b; i++)
#define Forr(i, a, b) for(int i = a; i >= b; i--)
#define F first
#define S second
#define all(x) x.begin(), x.end()
#define sz(x) ((int)x.size())
#define eb emplace_back
#define int LL
using namespace std;
using i32 = int32_t;
using LL = long long;
using pii = pair<int, int>;
 
const int MAXN = 200'000;
const int MAXLG = 20;
 
int n, k;
 
int dist(int s, int t) {
    if(s <= t) return t - s;
    else return t - s + n;
}

struct Ayaya {
    set<int> pos;
    set<pii> d;
    pii find(int x) {
        auto itr = pos.upper_bound(x);
        if(itr == pos.end()) {
            itr = pos.begin();
        }
        auto itl = pos.lower_bound(x);
        if(itl == pos.begin()) {
            itl = prev(pos.end());
        } else {
            itl = prev(itl);
        }
        return pii(*itl, *itr);
    }
    void insert(int x) {
        if(sz(pos) == 0) {
            pos.insert(x);
            d.emplace(0, x);
            return;
        }
        int l, r; tie(l, r) = find(x);
        d.erase(pii(dist(l, r), r));
        d.insert(pii(dist(l, x), x));
        d.insert(pii(dist(x, r), r));
        pos.insert(x);
    }
    void erase(int x) {
        if(sz(pos) == 1) {
            pos.clear(); d.clear();
            return;
        }
        int l, r; tie(l, r) = find(x);
        d.erase(pii(dist(l, x), x));
        d.erase(pii(dist(x, r), r));
        d.insert(pii(dist(l, r), r));
        pos.erase(x);
    }
    int pop() {
        int i = prev(d.end())->S;
        erase(i);
        return i;
    }
    void out() {
        for(auto &i:pos) cerr << i << " ";
        cerr << "\n";
        for(auto &i:d) cerr << "(" << i.F << ", " << i.S << ") ";
        cerr << "\n";
    }
} aya;

#define L(id) ((id) * 2 + 1)
#define R(id) ((id) * 2 + 2)
struct SegTree {
    int add[MAXN * 4 + 10];
    pii mn[MAXN * 4 + 10];  // {value, index}
    void pull(int id) {
        mn[id] = min(mn[L(id)], mn[R(id)]);
        mn[id].F += add[id];
    }
    void build(int id, int l, int r, int *owo) {
        add[id] = 0;
        if(l == r) {
            add[id] = owo[l];
            mn[id] = pii(owo[l], l);
            return;
        }
        int m = (l + r) / 2;
        build(L(id), l, m, owo);
        build(R(id), m + 1, r, owo);
        pull(id);
    }
    void range_add(int id, int l, int r, int L, int R, int val) {
        if(L > R) {
            range_add(0, 0, n - 1, L, n - 1, val);
            range_add(0, 0, n - 1, 0, R, val);
            return;
        }
        if(l >= L && r <= R) {
            add[id] += val; mn[id].F += val;
            return;
        }
        int m = (l + r) / 2;
        if(L <= m) range_add(L(id), l, m, L, R, val);
        if(R > m)  range_add(R(id), m + 1, r, L, R, val);
        pull(id);
    }
    pii find_min(int id, int l, int r, int L, int R) {
        if(L > R) {
            return min(
                find_min(0, 0, n - 1, L, n - 1),
                find_min(0, 0, n - 1, 0, R)
            );
        }
        if(l >= L && r <= R) return mn[id];
        int m = (l + r) / 2;
        pii res(n * 8, -1);
        if(L <= m) res = min(res, find_min(L(id), l, m, L, R));
        if(R > m)  res = min(res, find_min(R(id), m + 1, r, L, R));
        res.F += add[id];
        return res;
    }
    void kill_all() {
        pii res = find_min(0, 0, n - 1, 0, n - 1);
        while(res.F == 0) {
            aya.insert(res.S);
            range_add(0, 0, n - 1, res.S, res.S, n * 888);
            res = find_min(0, 0, n - 1, 0, n - 1);
        }
    }
} seg;

int r[MAXN + 10];
int rk[MAXN + 10];
int pos[MAXN + 10];
int pl[MAXLG + 10][MAXN + 10];
int pr[MAXLG + 10][MAXN + 10];
int sl[MAXLG + 10][MAXN + 10];
int sr[MAXLG + 10][MAXN + 10];

void init(int32_t __k, vector<int32_t> __r) {
    k = __k;
    n = sz(__r);
    For(i, 0, n - 1) r[i] = __r[i];
    
    seg.build(0, 0, n - 1, r);
    seg.kill_all();
    For(rank, 1, n) {
        int idx = aya.pop();
        seg.range_add(0, 0, n - 1, (idx + n - k + 1) % n, (idx + n - 1) % n, -1);
        seg.kill_all();
        rk[idx] = rank;
        pos[rank] = idx;
    }

    seg.build(0, 0, n - 1, rk);
    For(rank, 1, n) {
        int idx = pos[rank];
        pii owo;
        owo = seg.find_min(0, 0, n - 1, (idx + n - k + 1) % n, (idx + n - 1) % n);
        pl[0][idx] = (owo.F <= n ? owo.S : idx);
        owo = seg.find_min(0, 0, n - 1, (idx + 1) % n, (idx + k - 1) % n);
        pr[0][idx] = (owo.F <= n ? owo.S : idx);
        sl[0][idx] = dist(pl[0][idx], idx);
        sr[0][idx] = dist(idx, pr[0][idx]);
        seg.range_add(0, 0, n - 1, idx, idx, n * 888);
    }

    // For(i, 0, n - 1) cerr << rk[i] << " \n"[i == n - 1];
    // For(i, 0, n - 1) cerr << pl[i] << " \n"[i == n - 1];
    // For(i, 0, n - 1) cerr << sl[i] << " \n"[i == n - 1];
    // For(i, 0, n - 1) cerr << pr[i] << " \n"[i == n - 1];
    // For(i, 0, n - 1) cerr << sr[i] << " \n"[i == n - 1];
    
    For(j, 1, MAXLG - 1) {
        For(i, 0, n - 1) {
            pl[j][i] = pl[j - 1][pl[j - 1][i]];
            pr[j][i] = pr[j - 1][pr[j - 1][i]];
            sl[j][i] = sl[j - 1][i] + sl[j - 1][pl[j - 1][i]];
            sr[j][i] = sr[j - 1][i] + sr[j - 1][pr[j - 1][i]];
        }
        // For(i, 0, n - 1) cerr << sr[i] << " \n"[i == n - 1];
    }
}
 
int32_t compare_plants(int32_t x, int32_t y) {
    if(rk[x] > rk[y]) return -compare_plants(y, x);

    int d, x2;
    // left
    d = dist(y, x);
    x2 = x;
    Forr(i, MAXLG - 1, 0) {
        if(d - sl[i][x2] > 0) {
            d -= sl[i][x2];
            x2 = pl[i][x2];
        }
    }
    if(d <= sl[0][x2] && rk[x2] <= rk[y]) return 1;
    // right
    d = dist(x, y);
    x2 = x;
    Forr(i, MAXLG - 1, 0) {
        if(d - sr[i][x2] > 0) {
            d -= sr[i][x2];
            x2 = pr[i][x2];
        }
    }
    if(d <= sr[0][x2] && rk[x2] <= rk[y]) return 1;

    return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13396 KB Output is correct
2 Correct 5 ms 13368 KB Output is correct
3 Correct 5 ms 13396 KB Output is correct
4 Correct 4 ms 13396 KB Output is correct
5 Correct 6 ms 13396 KB Output is correct
6 Correct 70 ms 16208 KB Output is correct
7 Correct 233 ms 30496 KB Output is correct
8 Correct 1043 ms 161696 KB Output is correct
9 Correct 989 ms 161324 KB Output is correct
10 Correct 946 ms 161464 KB Output is correct
11 Correct 1014 ms 162648 KB Output is correct
12 Correct 991 ms 162272 KB Output is correct
13 Correct 1239 ms 172636 KB Output is correct
14 Correct 548 ms 150832 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 13396 KB Output is correct
2 Correct 6 ms 13396 KB Output is correct
3 Correct 7 ms 13396 KB Output is correct
4 Correct 5 ms 13396 KB Output is correct
5 Correct 8 ms 13404 KB Output is correct
6 Correct 8 ms 14036 KB Output is correct
7 Correct 77 ms 19680 KB Output is correct
8 Correct 9 ms 13556 KB Output is correct
9 Correct 8 ms 14036 KB Output is correct
10 Correct 71 ms 19680 KB Output is correct
11 Correct 123 ms 19836 KB Output is correct
12 Correct 95 ms 19700 KB Output is correct
13 Correct 65 ms 19640 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 13396 KB Output is correct
2 Correct 6 ms 13396 KB Output is correct
3 Correct 7 ms 13396 KB Output is correct
4 Correct 5 ms 13396 KB Output is correct
5 Correct 8 ms 13404 KB Output is correct
6 Correct 8 ms 14036 KB Output is correct
7 Correct 77 ms 19680 KB Output is correct
8 Correct 9 ms 13556 KB Output is correct
9 Correct 8 ms 14036 KB Output is correct
10 Correct 71 ms 19680 KB Output is correct
11 Correct 123 ms 19836 KB Output is correct
12 Correct 95 ms 19700 KB Output is correct
13 Correct 65 ms 19640 KB Output is correct
14 Correct 122 ms 29896 KB Output is correct
15 Correct 1045 ms 150716 KB Output is correct
16 Correct 122 ms 32064 KB Output is correct
17 Correct 957 ms 154472 KB Output is correct
18 Correct 1128 ms 165004 KB Output is correct
19 Correct 767 ms 154572 KB Output is correct
20 Correct 786 ms 154560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13396 KB Output is correct
2 Correct 6 ms 13396 KB Output is correct
3 Correct 100 ms 17556 KB Output is correct
4 Correct 835 ms 158128 KB Output is correct
5 Correct 961 ms 152408 KB Output is correct
6 Correct 973 ms 150916 KB Output is correct
7 Correct 1105 ms 150764 KB Output is correct
8 Correct 883 ms 150748 KB Output is correct
9 Correct 986 ms 159152 KB Output is correct
10 Correct 1014 ms 155620 KB Output is correct
11 Correct 1111 ms 175644 KB Output is correct
12 Correct 572 ms 153928 KB Output is correct
13 Correct 1176 ms 169256 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 6 ms 13396 KB Output is correct
2 Correct 6 ms 13376 KB Output is correct
3 Correct 7 ms 13396 KB Output is correct
4 Correct 5 ms 13396 KB Output is correct
5 Correct 7 ms 13424 KB Output is correct
6 Correct 9 ms 13524 KB Output is correct
7 Correct 26 ms 14164 KB Output is correct
8 Correct 20 ms 14136 KB Output is correct
9 Correct 21 ms 14184 KB Output is correct
10 Correct 16 ms 14220 KB Output is correct
11 Correct 25 ms 14156 KB Output is correct
12 Correct 22 ms 14132 KB Output is correct
13 Correct 17 ms 14208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13312 KB Output is correct
2 Correct 5 ms 13396 KB Output is correct
3 Correct 5 ms 13396 KB Output is correct
4 Correct 6 ms 13396 KB Output is correct
5 Correct 8 ms 14036 KB Output is correct
6 Correct 675 ms 151108 KB Output is correct
7 Correct 918 ms 150776 KB Output is correct
8 Correct 859 ms 150828 KB Output is correct
9 Correct 876 ms 150724 KB Output is correct
10 Correct 536 ms 158324 KB Output is correct
11 Correct 809 ms 154632 KB Output is correct
12 Correct 701 ms 160052 KB Output is correct
13 Correct 705 ms 154564 KB Output is correct
14 Correct 738 ms 153360 KB Output is correct
15 Correct 879 ms 153428 KB Output is correct
16 Correct 584 ms 156552 KB Output is correct
17 Correct 610 ms 153604 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 13396 KB Output is correct
2 Correct 5 ms 13368 KB Output is correct
3 Correct 5 ms 13396 KB Output is correct
4 Correct 4 ms 13396 KB Output is correct
5 Correct 6 ms 13396 KB Output is correct
6 Correct 70 ms 16208 KB Output is correct
7 Correct 233 ms 30496 KB Output is correct
8 Correct 1043 ms 161696 KB Output is correct
9 Correct 989 ms 161324 KB Output is correct
10 Correct 946 ms 161464 KB Output is correct
11 Correct 1014 ms 162648 KB Output is correct
12 Correct 991 ms 162272 KB Output is correct
13 Correct 1239 ms 172636 KB Output is correct
14 Correct 548 ms 150832 KB Output is correct
15 Correct 6 ms 13396 KB Output is correct
16 Correct 6 ms 13396 KB Output is correct
17 Correct 7 ms 13396 KB Output is correct
18 Correct 5 ms 13396 KB Output is correct
19 Correct 8 ms 13404 KB Output is correct
20 Correct 8 ms 14036 KB Output is correct
21 Correct 77 ms 19680 KB Output is correct
22 Correct 9 ms 13556 KB Output is correct
23 Correct 8 ms 14036 KB Output is correct
24 Correct 71 ms 19680 KB Output is correct
25 Correct 123 ms 19836 KB Output is correct
26 Correct 95 ms 19700 KB Output is correct
27 Correct 65 ms 19640 KB Output is correct
28 Correct 122 ms 29896 KB Output is correct
29 Correct 1045 ms 150716 KB Output is correct
30 Correct 122 ms 32064 KB Output is correct
31 Correct 957 ms 154472 KB Output is correct
32 Correct 1128 ms 165004 KB Output is correct
33 Correct 767 ms 154572 KB Output is correct
34 Correct 786 ms 154560 KB Output is correct
35 Correct 5 ms 13396 KB Output is correct
36 Correct 6 ms 13396 KB Output is correct
37 Correct 100 ms 17556 KB Output is correct
38 Correct 835 ms 158128 KB Output is correct
39 Correct 961 ms 152408 KB Output is correct
40 Correct 973 ms 150916 KB Output is correct
41 Correct 1105 ms 150764 KB Output is correct
42 Correct 883 ms 150748 KB Output is correct
43 Correct 986 ms 159152 KB Output is correct
44 Correct 1014 ms 155620 KB Output is correct
45 Correct 1111 ms 175644 KB Output is correct
46 Correct 572 ms 153928 KB Output is correct
47 Correct 1176 ms 169256 KB Output is correct
48 Correct 6 ms 13396 KB Output is correct
49 Correct 6 ms 13376 KB Output is correct
50 Correct 7 ms 13396 KB Output is correct
51 Correct 5 ms 13396 KB Output is correct
52 Correct 7 ms 13424 KB Output is correct
53 Correct 9 ms 13524 KB Output is correct
54 Correct 26 ms 14164 KB Output is correct
55 Correct 20 ms 14136 KB Output is correct
56 Correct 21 ms 14184 KB Output is correct
57 Correct 16 ms 14220 KB Output is correct
58 Correct 25 ms 14156 KB Output is correct
59 Correct 22 ms 14132 KB Output is correct
60 Correct 17 ms 14208 KB Output is correct
61 Correct 92 ms 19256 KB Output is correct
62 Correct 247 ms 32152 KB Output is correct
63 Correct 1051 ms 156192 KB Output is correct
64 Correct 764 ms 154148 KB Output is correct
65 Correct 1012 ms 154072 KB Output is correct
66 Correct 918 ms 154304 KB Output is correct
67 Correct 882 ms 154400 KB Output is correct
68 Correct 955 ms 159164 KB Output is correct
69 Correct 824 ms 155476 KB Output is correct
70 Correct 962 ms 160988 KB Output is correct
71 Correct 992 ms 155448 KB Output is correct
72 Correct 1034 ms 154196 KB Output is correct
73 Correct 890 ms 154328 KB Output is correct
74 Correct 954 ms 155344 KB Output is correct
75 Correct 851 ms 154524 KB Output is correct