Submission #804131

# Submission time Handle Problem Language Result Execution time Memory
804131 2023-08-03T07:17:45 Z finn__ Fountain Parks (IOI21_parks) C++17
45 / 100
306 ms 48424 KB
#include "parks.h"
#include <bits/stdc++.h>
using namespace std;

template <size_t N>
struct dsu
{
    int64_t p[N];

    dsu() { fill(p, p + N, -1); }

    int64_t repr(int64_t u) { return p[u] < 0 ? u : p[u] = repr(p[u]); }

    bool merge(int64_t i, int64_t j)
    {
        i = repr(i);
        j = repr(j);
        if (i == j)
            return 0;

        if (p[i] > p[j])
            swap(i, j);
        p[i] += p[j];
        p[j] = i;
        return 1;
    }

    bool same_set(int64_t i, int64_t j) { return repr(i) == repr(j); }

    int64_t set_size(int64_t i) { return -p[repr(i)]; }

    void reset() { fill(p.begin(), p.end(), -1); }
};

struct fountain
{
    int x, y;
    size_t i;
};

constexpr size_t N = 200000;

fountain f[N];
vector<pair<size_t, size_t>> edges;
vector<uint32_t> dual[N];
dsu<N> d;
set<pair<int, int>> points, marked;
set<tuple<int, int, uint32_t>> midpoints;
pair<int, int> dual_coords[N];
bitset<N> visited;
size_t l;

void mark_cut_points(uint32_t u)
{
    visited[u] = 1;
    for (auto const &v : dual[u])
        if (!visited[v])
        {
            if (u == l)
            {
                bool placed = 0;
                for (size_t i = 0; i < 4; ++i)
                {
                    pair<int, int> cand = {dual_coords[v].first + (-2 + (i & 1) * 4) * !(i & 2),
                                           dual_coords[v].second + (-2 + (i & 1) * 4) * (bool)(i & 2)};
                    bool not_present = 1;
                    for (auto const &w : dual[v])
                        if (w != u)
                            not_present &= dual_coords[w] != cand;
                    if (not_present)
                    {
                        marked.emplace((dual_coords[v].first + cand.first) >> 1,
                                       (dual_coords[v].second + cand.second) >> 1);
                        placed = 1;
                        break;
                    }
                }
                assert(placed);
            }
            else
            {
                marked.emplace((dual_coords[u].first + dual_coords[v].first) >> 1,
                               (dual_coords[u].second + dual_coords[v].second) >> 1);
            }
            mark_cut_points(v);
        }
}

int construct_roads(vector<int> x, vector<int> y)
{
    size_t n = x.size();

    for (size_t i = 0; i < n; ++i)
        points.emplace(x[i], y[i]);
    for (size_t i = 0; i < n; ++i)
        if (points.find({x[i] + 2, y[i]}) != points.end() &&
            points.find({x[i], y[i] + 2}) != points.end() &&
            points.find({x[i] + 2, y[i] + 2}) != points.end())
            midpoints.emplace(x[i] + 1, y[i] + 1, l++), dual_coords[l - 1] = {x[i] + 1, y[i] + 1};
    for (auto const &[x, y, i] : midpoints)
    {
        auto it = midpoints.lower_bound({x + 2, y, 0});
        if (it != midpoints.end() && get<0>(*it) == x + 2 && get<1>(*it) == y)
        {
            if (((x & 3) == 1) ^ ((y & 3) == 3))
                dual[get<2>(*it)].push_back(i);
            else
                dual[i].push_back(get<2>(*it));
        }
        it = midpoints.lower_bound({x, y + 2, 0});
        if (it != midpoints.end() && get<0>(*it) == x && get<1>(*it) == y + 2)
        {
            if (((y & 3) == 1) ^ ((x & 3) == 3))
                dual[i].push_back(get<2>(*it));
            else
                dual[get<2>(*it)].push_back(i);
        }
    }
    for (size_t i = 0; i < l; ++i)
        if (dual[i].size() < 4)
        {
            int x = dual_coords[i].first, y = dual_coords[i].second;
            for (size_t i = 0; i < 4; ++i)
            {
                pair<int, int> cand = {dual_coords[i].first + (-2 + (i & 1) * 4) * !(i & 2),
                                       dual_coords[i].second + (-2 + (i & 1) * 4) * (bool)(i & 2)};
                bool not_present = 1;
                for (auto const &w : dual[i])
                    if (w != l)
                        not_present &= dual_coords[w] != cand;
                if (not_present)
                {
                    if (cand.second == y && ((min(x, cand.first) & 3) == 1) ^ ((y & 3) == 3) ^ x > cand.first)
                    {
                        dual[l].push_back(i);
                        break;
                    }
                    if (cand.first == x && ((min(y, cand.second) & 3) == 1) ^ ((x & 3) == 3) ^ y > cand.second)
                    {
                        dual[l].push_back(i);
                        break;
                    }
                }
            }
        }
    mark_cut_points(l);

    for (size_t i = 0; i < x.size(); ++i)
        f[i].i = i, f[i].x = x[i], f[i].y = y[i];
    sort(f, f + n, [](auto const &a, auto const &b)
         { return a.y == b.y ? a.x < b.x : a.y < b.y; });

    for (size_t i = 0; i < n;)
    {
        size_t j = i;
        while (j < n && f[j].y == f[i].y)
            ++j;

        for (size_t k = i + 1; k < j; ++k)
            if (f[k - 1].x + 2 == f[k].x)
                if (marked.find({f[k - 1].x + 1, f[k - 1].y}) == marked.end() &&
                    d.merge(f[k - 1].i, f[k].i))
                    edges.emplace_back(f[k - 1].i, f[k].i);

        if (f[j].y == f[i].y + 2)
        {
            size_t k = j;
            while (i < j && k < n && f[k].y == f[j].y)
            {
                if (f[i].x < f[k].x)
                    ++i;
                else if (f[k].x < f[i].x)
                    ++k;
                else
                {
                    if (marked.find({f[i].x, f[i].y + 1}) == marked.end() &&
                        d.merge(f[i].i, f[k].i))
                        edges.emplace_back(f[k].i, f[i].i);
                    ++i;
                    ++k;
                }
            }
        }

        i = j;
    }

    if (d.set_size(0) != n)
        return 0;
    vector<int> u, v, a, b;
    for (auto const &[i, j] : edges)
    {
        u.push_back(i);
        v.push_back(j);
        if (x[i] == x[j])
        {
            b.push_back((y[i] + y[j]) >> 1);
            if (((x[i] & 3) == 2) ^ ((min(y[i], y[j]) & 3) == 2))
                a.push_back(x[i] - 1);
            else
                a.push_back(x[i] + 1);
        }
        else
        {
            a.push_back((x[i] + x[j]) >> 1);
            if (((y[i] & 3) == 2) ^ ((min(x[i], x[j]) & 3) == 2))
                b.push_back(y[i] + 1);
            else
                b.push_back(y[i] - 1);
        }
    }

    build(u, v, a, b);
    return 1;
}

Compilation message

parks.cpp: In function 'int construct_roads(std::vector<int>, std::vector<int>)':
parks.cpp:133:98: warning: suggest parentheses around comparison in operand of '^' [-Wparentheses]
  133 |                     if (cand.second == y && ((min(x, cand.first) & 3) == 1) ^ ((y & 3) == 3) ^ x > cand.first)
      |                                                                                                ~~^~~~~~~~~~~~
parks.cpp:138:98: warning: suggest parentheses around comparison in operand of '^' [-Wparentheses]
  138 |                     if (cand.first == x && ((min(y, cand.second) & 3) == 1) ^ ((x & 3) == 3) ^ y > cand.second)
      |                                                                                                ~~^~~~~~~~~~~~~
parks.cpp:188:23: warning: comparison of integer expressions of different signedness: 'int64_t' {aka 'long int'} and 'size_t' {aka 'long unsigned int'} [-Wsign-compare]
  188 |     if (d.set_size(0) != n)
      |         ~~~~~~~~~~~~~~^~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 3 ms 6580 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 23068 KB Output is correct
10 Correct 9 ms 8280 KB Output is correct
11 Correct 41 ms 15316 KB Output is correct
12 Correct 12 ms 9136 KB Output is correct
13 Correct 20 ms 11512 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 82 ms 23068 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 3 ms 6580 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 23068 KB Output is correct
10 Correct 9 ms 8280 KB Output is correct
11 Correct 41 ms 15316 KB Output is correct
12 Correct 12 ms 9136 KB Output is correct
13 Correct 20 ms 11512 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 82 ms 23068 KB Output is correct
17 Correct 3 ms 6484 KB Output is correct
18 Correct 3 ms 6584 KB Output is correct
19 Correct 3 ms 6516 KB Output is correct
20 Correct 3 ms 6484 KB Output is correct
21 Correct 3 ms 6484 KB Output is correct
22 Correct 3 ms 6484 KB Output is correct
23 Incorrect 306 ms 48424 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 3 ms 6580 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 23068 KB Output is correct
10 Correct 9 ms 8280 KB Output is correct
11 Correct 41 ms 15316 KB Output is correct
12 Correct 12 ms 9136 KB Output is correct
13 Correct 20 ms 11512 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 82 ms 23068 KB Output is correct
17 Correct 3 ms 6484 KB Output is correct
18 Correct 3 ms 6584 KB Output is correct
19 Correct 3 ms 6516 KB Output is correct
20 Correct 3 ms 6484 KB Output is correct
21 Correct 3 ms 6484 KB Output is correct
22 Correct 3 ms 6484 KB Output is correct
23 Incorrect 306 ms 48424 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 3 ms 6580 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 23068 KB Output is correct
10 Correct 9 ms 8280 KB Output is correct
11 Correct 41 ms 15316 KB Output is correct
12 Correct 12 ms 9136 KB Output is correct
13 Correct 20 ms 11512 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 82 ms 23068 KB Output is correct
17 Correct 3 ms 6484 KB Output is correct
18 Correct 5 ms 6612 KB Output is correct
19 Correct 3 ms 6484 KB Output is correct
20 Correct 270 ms 41612 KB Output is correct
21 Correct 247 ms 41160 KB Output is correct
22 Correct 263 ms 41072 KB Output is correct
23 Correct 191 ms 35972 KB Output is correct
24 Correct 142 ms 23936 KB Output is correct
25 Correct 229 ms 28004 KB Output is correct
26 Correct 147 ms 28036 KB Output is correct
27 Correct 202 ms 40004 KB Output is correct
28 Correct 204 ms 39776 KB Output is correct
29 Correct 287 ms 39712 KB Output is correct
30 Correct 282 ms 39696 KB Output is correct
31 Correct 3 ms 6580 KB Output is correct
32 Correct 16 ms 9108 KB Output is correct
33 Correct 67 ms 15552 KB Output is correct
34 Correct 231 ms 41612 KB Output is correct
35 Correct 9 ms 7768 KB Output is correct
36 Correct 44 ms 12240 KB Output is correct
37 Correct 91 ms 17812 KB Output is correct
38 Correct 92 ms 20884 KB Output is correct
39 Correct 133 ms 25612 KB Output is correct
40 Correct 169 ms 31984 KB Output is correct
41 Correct 216 ms 36496 KB Output is correct
42 Correct 273 ms 42128 KB Output is correct
43 Correct 3 ms 6492 KB Output is correct
44 Correct 3 ms 6488 KB Output is correct
45 Correct 3 ms 6488 KB Output is correct
46 Correct 3 ms 6496 KB Output is correct
47 Correct 3 ms 6520 KB Output is correct
48 Correct 3 ms 6484 KB Output is correct
49 Correct 3 ms 6484 KB Output is correct
50 Correct 3 ms 6484 KB Output is correct
51 Correct 3 ms 6484 KB Output is correct
52 Correct 3 ms 6484 KB Output is correct
53 Correct 3 ms 6576 KB Output is correct
54 Correct 4 ms 6740 KB Output is correct
55 Correct 4 ms 6868 KB Output is correct
56 Correct 97 ms 23184 KB Output is correct
57 Correct 149 ms 31264 KB Output is correct
58 Correct 150 ms 31528 KB Output is correct
59 Correct 3 ms 6580 KB Output is correct
60 Correct 3 ms 6484 KB Output is correct
61 Correct 3 ms 6484 KB Output is correct
62 Correct 174 ms 39824 KB Output is correct
63 Correct 174 ms 39872 KB Output is correct
64 Correct 190 ms 39720 KB Output is correct
65 Correct 6 ms 7012 KB Output is correct
66 Correct 7 ms 7480 KB Output is correct
67 Correct 108 ms 23068 KB Output is correct
68 Correct 159 ms 32232 KB Output is correct
69 Correct 224 ms 39820 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 3 ms 6580 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 23068 KB Output is correct
10 Correct 9 ms 8280 KB Output is correct
11 Correct 41 ms 15316 KB Output is correct
12 Correct 12 ms 9136 KB Output is correct
13 Correct 20 ms 11512 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 82 ms 23068 KB Output is correct
17 Correct 215 ms 40524 KB Output is correct
18 Correct 218 ms 40884 KB Output is correct
19 Correct 251 ms 41184 KB Output is correct
20 Correct 251 ms 38952 KB Output is correct
21 Correct 214 ms 35712 KB Output is correct
22 Correct 3 ms 6484 KB Output is correct
23 Correct 34 ms 12164 KB Output is correct
24 Correct 17 ms 8904 KB Output is correct
25 Correct 61 ms 15056 KB Output is correct
26 Correct 109 ms 19580 KB Output is correct
27 Correct 129 ms 23976 KB Output is correct
28 Correct 151 ms 28256 KB Output is correct
29 Correct 190 ms 33832 KB Output is correct
30 Correct 223 ms 37184 KB Output is correct
31 Correct 298 ms 41544 KB Output is correct
32 Correct 222 ms 39696 KB Output is correct
33 Correct 172 ms 39828 KB Output is correct
34 Correct 6 ms 7124 KB Output is correct
35 Correct 7 ms 7744 KB Output is correct
36 Correct 100 ms 23180 KB Output is correct
37 Correct 158 ms 32216 KB Output is correct
38 Correct 221 ms 39820 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 3 ms 6580 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 23068 KB Output is correct
10 Correct 9 ms 8280 KB Output is correct
11 Correct 41 ms 15316 KB Output is correct
12 Correct 12 ms 9136 KB Output is correct
13 Correct 20 ms 11512 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 82 ms 23068 KB Output is correct
17 Correct 3 ms 6484 KB Output is correct
18 Correct 3 ms 6584 KB Output is correct
19 Correct 3 ms 6516 KB Output is correct
20 Correct 3 ms 6484 KB Output is correct
21 Correct 3 ms 6484 KB Output is correct
22 Correct 3 ms 6484 KB Output is correct
23 Incorrect 306 ms 48424 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
24 Halted 0 ms 0 KB -