Submission #801968

# Submission time Handle Problem Language Result Execution time Memory
801968 2023-08-02T08:47:43 Z GEN 이지후(#10129) Cultivation (JOI17_cultivation) C++17
30 / 100
1511 ms 1112 KB
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pi = array<lint, 2>;
#define sz(v) ((int)(v).size())
#define all(v) (v).begin(), (v).end()
const int MAXT = 1050;

vector<lint> cy;

struct node {
	int cmin, cmax, gap;
	node() {
		cmin = 2e9;
		cmax = -2e9;
		gap = 0;
	}
	node(int pos) {
		cmin = cmax = pos;
		gap = 0;
	}
	node(int fuck1, int fuck2, int fuck3) {
		cmin = fuck1;
		cmax = fuck2;
		gap = fuck3;
	}
	node operator+(const node &nd) {
		if (cmax < 0)
			return nd;
		if (nd.cmax < 0)
			return *this;
		return node(cmin, nd.cmax, max({gap, nd.gap, nd.cmin - cmax - 1}));
	}
};

struct seg {
	node tree[MAXT];
	int lim;
	void init(int sz) {
		for (lim = 1; lim <= sz; lim <<= 1)
			;
		fill(tree, tree + MAXT, node());
	}
	void upd(int x, int cnt) {
		if (cnt == 0)
			tree[x + lim] = node();
		else
			tree[x + lim] = node(cy[x]);
		x += lim;
		while (x > 1) {
			x >>= 1;
			tree[x] = tree[2 * x] + tree[2 * x + 1];
		}
	}
} seg;

int cnt[696];
pi dq[3][696];
int fr[3], ed[3];

lint sumFixed(lint r, lint c, lint g, vector<pi> &a) {
	vector<array<lint, 3>> e1, e2, event;
	e1.push_back({0, -1, 0});
	for (auto &[x, y] : a) {
		e1.push_back({x, y, +1});
		e2.push_back({x + 1 + g, y, -1});
	}
	e2.push_back({r + g, -1, 0});
	event.resize(sz(e1) + sz(e2));
	merge(all(e1), all(e2), event.begin());
	vector<array<lint, 5>> chop;
	memset(cnt, 0, sizeof(cnt));
	seg.init(sz(cy));
	if (a[0][0])
		chop.push_back({0, a[0][0], lint(1e18), lint(1e18), lint(1e18)});
	for (int i = 0; i < sz(a) - 1;) {
		if (a[i][0] == a[i + 1][0]) {
			i++;
			continue;
		}
		int j = i;
		while (j < sz(event) && event[j][0] <= a[i][0]) {
			if (event[j][2]) {
				bool prv = (cnt[event[j][1]] > 0);
				cnt[event[j][1]] += event[j][2];
				bool cur = (cnt[event[j][1]] > 0);
				if (prv && !cur) {
					seg.upd(event[j][1], cnt[event[j][1]]);
				} else if (!prv && cur) {
					seg.upd(event[j][1], cnt[event[j][1]]);
				}
			}
			j++;
		}
		lint lmax = seg.tree[1].cmin, rmax = c - 1 - seg.tree[1].cmax, lrmax = seg.tree[1].gap;
		chop.push_back({a[i][0], a[i + 1][0], lmax, rmax, lrmax});
		i = j;
	}
	if (a.back()[0] < r + g) {
		chop.push_back({a.back()[0], r + g, lint(1e18), lint(1e18), lint(1e18)});
	}
	int k = 0;
	memset(fr, 0, sizeof(fr));
	memset(ed, 0, sizeof(ed));
	lint ans = 1e18;
	for (int i = 0; i < sz(a); i++) {
		if (a[i][0] > g)
			break;
		while (k < sz(chop) && chop[k][0] < a[i][0] + r) {
			for (int t = 0; t < 3; t++) {
				pi val = {chop[k][t + 2], chop[k][1]};
				while (fr[t] < ed[t] && dq[t][ed[t] - 1][0] <= val[0])
					ed[t]--;
				dq[t][ed[t]++] = val;
			}
			k++;
		}
		lint dap[3] = {0, 0, 0};
		for (int t = 0; t < 3; t++) {
			while (fr[t] < ed[t] && dq[t][fr[t]][1] <= a[i][0])
				fr[t]++;
			dap[t] = dq[t][fr[t]][0];
		}
		ans = min(ans, max(dap[0] + dap[1], dap[2]));
	}
	return ans;
}

map<pi, lint> mp;
// abandon
lint solve(lint r, lint c, lint dl, lint dr, vector<pi> &a, lint jasal) {
	if (mp.count({dl, dr}))
		return mp[pi{dl, dr}];
	vector<array<lint, 3>> e1, e2, event;
	for (auto &[x, y] : a) {
		int l = max(0ll, x - dl);
		int e = min(r * 1ll, x + 1 + dr);
		e1.push_back({l, y, +1});
		e2.push_back({e, y, -1});
	}
	event.resize(sz(e1) + sz(e2));
	merge(all(e1), all(e2), event.begin());
	if (event[0][0] != 0 || event.back()[0] != r)
		return mp[pi{dl, dr}] = 1e18;

	lint lmax = 0, rmax = 0, lrmax = 0;
	memset(cnt, 0, sizeof(cnt));
	seg.init(sz(cy));
	for (int i = 0; i < sz(event);) {
		int j = i;
		while (j < sz(event) && event[i][0] == event[j][0]) {
			if (event[j][2]) {
				bool prv = (cnt[event[j][1]] > 0);
				cnt[event[j][1]] += event[j][2];
				bool cur = (cnt[event[j][1]] > 0);
				if (prv && !cur) {
					seg.upd(event[j][1], cnt[event[j][1]]);
				} else if (!prv && cur) {
					seg.upd(event[j][1], cnt[event[j][1]]);
				}
			}
			j++;
		}
		if (j == sz(event))
			break;
		lmax = max(lmax, 1ll * seg.tree[1].cmin);
		rmax = max(rmax, c - 1 - seg.tree[1].cmax);
		lrmax = max(lrmax, 1ll * seg.tree[1].gap);
		if (lmax + rmax >= jasal || lrmax >= jasal)
			return 1e18;
		i = j;
	}
	return mp[pi{dl, dr}] = max(lmax + rmax, lrmax);
}

// n^3 log n

int main() {
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int n, r, c;
	cin >> r >> c >> n;
	vector<pi> a(n);
	for (auto &[x, y] : a)
		cin >> x >> y, x--, y--;
	sort(all(a));
	lint ans = 2ll * (r + c);
	vector<lint> gaps = {0};
	for (int i = 0; i < n; i++) {
		cy.push_back(a[i][1]);
		for (int j = i + 1; j < n; j++) {
			if (a[j][0] > a[i][0])
				gaps.push_back(a[j][0] - a[i][0] - 1);
		}
	}
	sort(all(cy));
	cy.resize(unique(all(cy)) - cy.begin());
	for (int i = 0; i < n; i++) {
		a[i][1] = lower_bound(all(cy), a[i][1]) - cy.begin();
	}
	sort(all(gaps));
	gaps.resize(unique(all(gaps)) - gaps.begin());
	seg.init(sz(cy));
	for (auto &dy : gaps) {
		if (ans > dy) {
			ans = min(ans, sumFixed(r, c, dy, a) + dy);
			if (clock() > 0.9 * CLOCKS_PER_SEC)
				break;
		}
	}
	for (int i = 0; i < n; i++) {
		for (int j = n - 1; j >= 0; j--) {
			if (a[i][0] + r - 1 - a[j][0] >= ans)
				break;
			lint jsp = ans - (a[i][0] + r - 1 - a[j][0]);
			ans = min(ans, a[i][0] + r - 1 - a[j][0] + solve(r, c, a[i][0], r - 1 - a[j][0], a, jsp));
		}
		if (clock() > 1.995 * CLOCKS_PER_SEC)
			break;
	}
	cout << ans << endl;
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 336 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 336 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 2 ms 336 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 7 ms 340 KB Output is correct
22 Correct 10 ms 468 KB Output is correct
23 Correct 4 ms 340 KB Output is correct
24 Correct 24 ms 716 KB Output is correct
25 Correct 15 ms 468 KB Output is correct
26 Correct 83 ms 984 KB Output is correct
27 Correct 80 ms 984 KB Output is correct
28 Correct 28 ms 724 KB Output is correct
29 Correct 37 ms 984 KB Output is correct
30 Correct 42 ms 984 KB Output is correct
31 Correct 21 ms 976 KB Output is correct
32 Correct 38 ms 980 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 336 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 2 ms 336 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 7 ms 340 KB Output is correct
22 Correct 10 ms 468 KB Output is correct
23 Correct 4 ms 340 KB Output is correct
24 Correct 24 ms 716 KB Output is correct
25 Correct 15 ms 468 KB Output is correct
26 Correct 83 ms 984 KB Output is correct
27 Correct 80 ms 984 KB Output is correct
28 Correct 28 ms 724 KB Output is correct
29 Correct 37 ms 984 KB Output is correct
30 Correct 42 ms 984 KB Output is correct
31 Correct 21 ms 976 KB Output is correct
32 Correct 38 ms 980 KB Output is correct
33 Correct 527 ms 724 KB Output is correct
34 Correct 1416 ms 984 KB Output is correct
35 Correct 1218 ms 984 KB Output is correct
36 Correct 1471 ms 984 KB Output is correct
37 Correct 1418 ms 976 KB Output is correct
38 Correct 1443 ms 984 KB Output is correct
39 Correct 1297 ms 984 KB Output is correct
40 Correct 1287 ms 1112 KB Output is correct
41 Correct 1511 ms 724 KB Output is correct
42 Correct 1240 ms 984 KB Output is correct
43 Correct 1418 ms 984 KB Output is correct
44 Correct 1127 ms 984 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 2 ms 340 KB Output is correct
3 Correct 2 ms 340 KB Output is correct
4 Correct 3 ms 340 KB Output is correct
5 Correct 2 ms 340 KB Output is correct
6 Incorrect 1 ms 340 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 2 ms 340 KB Output is correct
3 Correct 2 ms 340 KB Output is correct
4 Correct 3 ms 340 KB Output is correct
5 Correct 2 ms 340 KB Output is correct
6 Incorrect 1 ms 340 KB Output isn't correct
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 340 KB Output is correct
3 Correct 1 ms 340 KB Output is correct
4 Correct 1 ms 340 KB Output is correct
5 Correct 1 ms 336 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 340 KB Output is correct
8 Correct 1 ms 340 KB Output is correct
9 Correct 1 ms 340 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 340 KB Output is correct
12 Correct 1 ms 340 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 340 KB Output is correct
15 Correct 1 ms 336 KB Output is correct
16 Correct 1 ms 340 KB Output is correct
17 Correct 1 ms 336 KB Output is correct
18 Correct 2 ms 336 KB Output is correct
19 Correct 1 ms 336 KB Output is correct
20 Correct 1 ms 340 KB Output is correct
21 Correct 7 ms 340 KB Output is correct
22 Correct 10 ms 468 KB Output is correct
23 Correct 4 ms 340 KB Output is correct
24 Correct 24 ms 716 KB Output is correct
25 Correct 15 ms 468 KB Output is correct
26 Correct 83 ms 984 KB Output is correct
27 Correct 80 ms 984 KB Output is correct
28 Correct 28 ms 724 KB Output is correct
29 Correct 37 ms 984 KB Output is correct
30 Correct 42 ms 984 KB Output is correct
31 Correct 21 ms 976 KB Output is correct
32 Correct 38 ms 980 KB Output is correct
33 Correct 527 ms 724 KB Output is correct
34 Correct 1416 ms 984 KB Output is correct
35 Correct 1218 ms 984 KB Output is correct
36 Correct 1471 ms 984 KB Output is correct
37 Correct 1418 ms 976 KB Output is correct
38 Correct 1443 ms 984 KB Output is correct
39 Correct 1297 ms 984 KB Output is correct
40 Correct 1287 ms 1112 KB Output is correct
41 Correct 1511 ms 724 KB Output is correct
42 Correct 1240 ms 984 KB Output is correct
43 Correct 1418 ms 984 KB Output is correct
44 Correct 1127 ms 984 KB Output is correct
45 Correct 1 ms 340 KB Output is correct
46 Correct 2 ms 340 KB Output is correct
47 Correct 2 ms 340 KB Output is correct
48 Correct 3 ms 340 KB Output is correct
49 Correct 2 ms 340 KB Output is correct
50 Incorrect 1 ms 340 KB Output isn't correct
51 Halted 0 ms 0 KB -