Submission #800783

# Submission time Handle Problem Language Result Execution time Memory
800783 2023-08-01T20:41:03 Z finn__ Fountain Parks (IOI21_parks) C++17
45 / 100
308 ms 39572 KB
#include "parks.h"
#include <bits/stdc++.h>
using namespace std;

template <size_t N>
struct dsu
{
    int64_t p[N];

    dsu() { fill(p, p + N, -1); }

    int64_t repr(int64_t u) { return p[u] < 0 ? u : p[u] = repr(p[u]); }

    bool merge(int64_t i, int64_t j)
    {
        i = repr(i);
        j = repr(j);
        if (i == j)
            return 0;

        if (p[i] > p[j])
            swap(i, j);
        p[i] += p[j];
        p[j] = i;
        return 1;
    }

    bool same_set(int64_t i, int64_t j) { return repr(i) == repr(j); }

    int64_t set_size(int64_t i) { return -p[repr(i)]; }

    void reset() { fill(p.begin(), p.end(), -1); }
};

struct fountain
{
    int x, y;
    size_t i;
};

constexpr size_t N = 200000;

fountain f[N];
vector<pair<size_t, size_t>> edges;
vector<uint32_t> dual[N];
dsu<N> d;
set<pair<int, int>> points, marked;
set<tuple<int, int, uint32_t>> midpoints;
pair<int, int> dual_coords[N];
bitset<N> visited;

void mark_cut_points(uint32_t u)
{
    visited[u] = 1;
    for (auto const &v : dual[u])
        if (!visited[v])
        {
            marked.emplace((dual_coords[u].first + dual_coords[v].first) >> 1,
                           (dual_coords[u].second + dual_coords[v].second) >> 1);
            mark_cut_points(v);
        }
}

int construct_roads(vector<int> x, vector<int> y)
{
    size_t n = x.size();

    for (size_t i = 0; i < n; ++i)
        points.emplace(x[i], y[i]);
    size_t l = 0;
    for (size_t i = 0; i < n; ++i)
        if (points.find({x[i] + 2, y[i]}) != points.end() &&
            points.find({x[i], y[i] + 2}) != points.end() &&
            points.find({x[i] + 2, y[i] + 2}) != points.end())
            midpoints.emplace(x[i] + 1, y[i] + 1, l++), dual_coords[l - 1] = {x[i] + 1, y[i] + 1};
    for (auto const &[x, y, i] : midpoints)
    {
        auto it = midpoints.lower_bound({x + 2, y, 0});
        if (it != midpoints.end() && get<0>(*it) == x + 2 && get<1>(*it) == y)
            dual[i].push_back(get<2>(*it)), dual[get<2>(*it)].push_back(i);
        it = midpoints.lower_bound({x, y + 2, 0});
        if (it != midpoints.end() && get<0>(*it) == x && get<1>(*it) == y + 2)
            dual[i].push_back(get<2>(*it)), dual[get<2>(*it)].push_back(i);
    }
    for (size_t i = 0; i < l; ++i)
        if (dual[i].size() < 4)
            dual[l].push_back(i), dual[i].push_back(l);
    mark_cut_points(l);

    for (size_t i = 0; i < x.size(); ++i)
        f[i].i = i, f[i].x = x[i], f[i].y = y[i];
    sort(f, f + n, [](auto const &a, auto const &b)
         { return a.y == b.y ? a.x < b.x : a.y < b.y; });

    for (size_t i = 0; i < n;)
    {
        size_t j = i;
        while (j < n && f[j].y == f[i].y)
            ++j;

        for (size_t k = i + 1; k < j; ++k)
            if (f[k - 1].x + 2 == f[k].x)
                if (marked.find({f[k - 1].x + 1, f[k - 1].y}) == marked.end() &&
                    d.merge(f[k - 1].i, f[k].i))
                    edges.emplace_back(f[k - 1].i, f[k].i);

        if (f[j].y == f[i].y + 2)
        {
            size_t k = j;
            while (i < j && k < n && f[k].y == f[j].y)
            {
                if (f[i].x < f[k].x)
                    ++i;
                else if (f[k].x < f[i].x)
                    ++k;
                else
                {
                    if (marked.find({f[i].x, f[i].y + 1}) == marked.end() &&
                        d.merge(f[i].i, f[k].i))
                        edges.emplace_back(f[k].i, f[i].i);
                    ++i;
                    ++k;
                }
            }
        }

        i = j;
    }

    if (d.set_size(0) != n)
        return 0;
    vector<int> u, v, a, b;
    for (auto const &[i, j] : edges)
    {
        u.push_back(i);
        v.push_back(j);
        if (x[i] == x[j])
        {
            b.push_back((y[i] + y[j]) >> 1);
            if (((x[i] & 3) == 2) ^ ((min(y[i], y[j]) & 3) == 2))
                a.push_back(x[i] - 1);
            else
                a.push_back(x[i] + 1);
        }
        else
        {
            a.push_back((x[i] + x[j]) >> 1);
            if (((y[i] & 3) == 2) ^ ((min(x[i], x[j]) & 3) == 2))
                b.push_back(y[i] + 1);
            else
                b.push_back(y[i] - 1);
        }
    }

    build(u, v, a, b);
    return 1;
}

Compilation message

parks.cpp: In function 'int construct_roads(std::vector<int>, std::vector<int>)':
parks.cpp:130:23: warning: comparison of integer expressions of different signedness: 'int64_t' {aka 'long int'} and 'size_t' {aka 'long unsigned int'} [-Wsign-compare]
  130 |     if (d.set_size(0) != n)
      |         ~~~~~~~~~~~~~~^~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 4 ms 6492 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 86 ms 22276 KB Output is correct
10 Correct 10 ms 8256 KB Output is correct
11 Correct 38 ms 14912 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 23 ms 11152 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 95 ms 22268 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 4 ms 6492 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 86 ms 22276 KB Output is correct
10 Correct 10 ms 8256 KB Output is correct
11 Correct 38 ms 14912 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 23 ms 11152 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 95 ms 22268 KB Output is correct
17 Incorrect 3 ms 6484 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 4 ms 6492 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 86 ms 22276 KB Output is correct
10 Correct 10 ms 8256 KB Output is correct
11 Correct 38 ms 14912 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 23 ms 11152 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 95 ms 22268 KB Output is correct
17 Incorrect 3 ms 6484 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 4 ms 6492 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 86 ms 22276 KB Output is correct
10 Correct 10 ms 8256 KB Output is correct
11 Correct 38 ms 14912 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 23 ms 11152 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 95 ms 22268 KB Output is correct
17 Correct 3 ms 6484 KB Output is correct
18 Correct 3 ms 6484 KB Output is correct
19 Correct 3 ms 6484 KB Output is correct
20 Correct 286 ms 39012 KB Output is correct
21 Correct 279 ms 38824 KB Output is correct
22 Correct 263 ms 38880 KB Output is correct
23 Correct 209 ms 34168 KB Output is correct
24 Correct 156 ms 22220 KB Output is correct
25 Correct 217 ms 26456 KB Output is correct
26 Correct 149 ms 26428 KB Output is correct
27 Correct 200 ms 38620 KB Output is correct
28 Correct 197 ms 38176 KB Output is correct
29 Correct 257 ms 38164 KB Output is correct
30 Correct 254 ms 38148 KB Output is correct
31 Correct 3 ms 6484 KB Output is correct
32 Correct 18 ms 8912 KB Output is correct
33 Correct 70 ms 14308 KB Output is correct
34 Correct 220 ms 39076 KB Output is correct
35 Correct 9 ms 7640 KB Output is correct
36 Correct 42 ms 11612 KB Output is correct
37 Correct 87 ms 16544 KB Output is correct
38 Correct 98 ms 19772 KB Output is correct
39 Correct 125 ms 24156 KB Output is correct
40 Correct 165 ms 30180 KB Output is correct
41 Correct 207 ms 34300 KB Output is correct
42 Correct 250 ms 39572 KB Output is correct
43 Correct 3 ms 6484 KB Output is correct
44 Correct 3 ms 6484 KB Output is correct
45 Correct 3 ms 6484 KB Output is correct
46 Correct 3 ms 6484 KB Output is correct
47 Correct 3 ms 6484 KB Output is correct
48 Correct 3 ms 6552 KB Output is correct
49 Correct 4 ms 6484 KB Output is correct
50 Correct 3 ms 6560 KB Output is correct
51 Correct 3 ms 6484 KB Output is correct
52 Correct 3 ms 6484 KB Output is correct
53 Correct 3 ms 6484 KB Output is correct
54 Correct 3 ms 6740 KB Output is correct
55 Correct 4 ms 6868 KB Output is correct
56 Correct 100 ms 22276 KB Output is correct
57 Correct 145 ms 30116 KB Output is correct
58 Correct 145 ms 30244 KB Output is correct
59 Correct 3 ms 6484 KB Output is correct
60 Correct 3 ms 6528 KB Output is correct
61 Correct 3 ms 6484 KB Output is correct
62 Correct 171 ms 38152 KB Output is correct
63 Correct 170 ms 38120 KB Output is correct
64 Correct 176 ms 38052 KB Output is correct
65 Correct 5 ms 6996 KB Output is correct
66 Correct 7 ms 7396 KB Output is correct
67 Correct 99 ms 22204 KB Output is correct
68 Correct 154 ms 30896 KB Output is correct
69 Correct 229 ms 38208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 4 ms 6492 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 86 ms 22276 KB Output is correct
10 Correct 10 ms 8256 KB Output is correct
11 Correct 38 ms 14912 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 23 ms 11152 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 95 ms 22268 KB Output is correct
17 Correct 204 ms 38700 KB Output is correct
18 Correct 208 ms 38676 KB Output is correct
19 Correct 231 ms 38776 KB Output is correct
20 Correct 240 ms 37436 KB Output is correct
21 Correct 201 ms 34364 KB Output is correct
22 Correct 3 ms 6484 KB Output is correct
23 Correct 34 ms 11708 KB Output is correct
24 Correct 17 ms 8784 KB Output is correct
25 Correct 62 ms 14228 KB Output is correct
26 Correct 107 ms 18148 KB Output is correct
27 Correct 123 ms 22652 KB Output is correct
28 Correct 152 ms 26508 KB Output is correct
29 Correct 192 ms 31868 KB Output is correct
30 Correct 218 ms 35236 KB Output is correct
31 Correct 308 ms 39012 KB Output is correct
32 Correct 212 ms 38168 KB Output is correct
33 Correct 171 ms 38172 KB Output is correct
34 Correct 5 ms 7124 KB Output is correct
35 Correct 7 ms 7568 KB Output is correct
36 Correct 98 ms 22388 KB Output is correct
37 Correct 160 ms 30868 KB Output is correct
38 Correct 215 ms 38232 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6484 KB Output is correct
5 Correct 4 ms 6492 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 3 ms 6484 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 86 ms 22276 KB Output is correct
10 Correct 10 ms 8256 KB Output is correct
11 Correct 38 ms 14912 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 23 ms 11152 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 4 ms 6740 KB Output is correct
16 Correct 95 ms 22268 KB Output is correct
17 Incorrect 3 ms 6484 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
18 Halted 0 ms 0 KB -