Submission #800774

# Submission time Handle Problem Language Result Execution time Memory
800774 2023-08-01T20:36:35 Z finn__ Fountain Parks (IOI21_parks) C++17
45 / 100
278 ms 39692 KB
#include "parks.h"
#include <bits/stdc++.h>
using namespace std;

template <size_t N>
struct dsu
{
    int64_t p[N];

    dsu() { fill(p, p + N, -1); }

    int64_t repr(int64_t u) { return p[u] < 0 ? u : p[u] = repr(p[u]); }

    bool merge(int64_t i, int64_t j)
    {
        i = repr(i);
        j = repr(j);
        if (i == j)
            return 0;

        if (p[i] > p[j])
            swap(i, j);
        p[i] += p[j];
        p[j] = i;
        return 1;
    }

    bool same_set(int64_t i, int64_t j) { return repr(i) == repr(j); }

    int64_t set_size(int64_t i) { return -p[repr(i)]; }

    void reset() { fill(p.begin(), p.end(), -1); }
};

struct fountain
{
    int x, y;
    size_t i;
};

constexpr size_t N = 200000;

fountain f[N];
vector<pair<size_t, size_t>> edges;
vector<uint32_t> dual[N];
dsu<N> d;
set<pair<int, int>> points, marked;
set<tuple<int, int, uint32_t>> midpoints;
pair<int, int> dual_coords[N];

void mark_cut_points(uint32_t u, uint32_t p = -1)
{
    for (auto const &v : dual[u])
        if (v != p)
        {
            marked.emplace((dual_coords[u].first + dual_coords[v].first) >> 1, (dual_coords[u].second + dual_coords[v].second) >> 1);
            mark_cut_points(v, u);
        }
}

int construct_roads(vector<int> x, vector<int> y)
{
    size_t n = x.size();

    for (size_t i = 0; i < n; ++i)
        points.emplace(x[i], y[i]);
    size_t l = 0;
    for (size_t i = 0; i < n; ++i)
        if (points.find({x[i] + 2, y[i]}) != points.end() &&
            points.find({x[i], y[i] + 2}) != points.end() &&
            points.find({x[i] + 2, y[i] + 2}) != points.end())
            midpoints.emplace(x[i] + 1, y[i] + 1, l++), dual_coords[l - 1] = {x[i] + 1, y[i] + 1};
    for (auto const &[x, y, i] : midpoints)
    {
        auto it = midpoints.lower_bound({x + 2, y, 0});
        if (it != midpoints.end() && get<0>(*it) == x + 2 && get<1>(*it) == y)
            dual[i].push_back(get<2>(*it)), dual[get<2>(*it)].push_back(i);
        it = midpoints.lower_bound({x, y + 2, 0});
        if (it != midpoints.end() && get<0>(*it) == x && get<1>(*it) == y + 2)
            dual[i].push_back(get<2>(*it)), dual[get<2>(*it)].push_back(i);
    }
    for (size_t i = 0; i < l; ++i)
        if (dual[i].size() < 4)
            dual[l].push_back(i), dual[i].push_back(l);
    mark_cut_points(l);

    for (size_t i = 0; i < x.size(); ++i)
        f[i].i = i, f[i].x = x[i], f[i].y = y[i];
    sort(f, f + n, [](auto const &a, auto const &b)
         { return a.y == b.y ? a.x < b.x : a.y < b.y; });

    for (size_t i = 0; i < n;)
    {
        size_t j = i;
        while (j < n && f[j].y == f[i].y)
            ++j;

        for (size_t k = i + 1; k < j; ++k)
            if (f[k - 1].x + 2 == f[k].x)
                if (marked.find({f[k - 1].x + 1, f[k - 1].y}) == marked.end() &&
                    d.merge(f[k - 1].i, f[k].i))
                    edges.emplace_back(f[k - 1].i, f[k].i);

        if (f[j].y == f[i].y + 2)
        {
            size_t k = j;
            while (i < j && k < n && f[k].y == f[j].y)
            {
                if (f[i].x < f[k].x)
                    ++i;
                else if (f[k].x < f[i].x)
                    ++k;
                else
                {
                    if (marked.find({f[i].x, f[i].y + 1}) == marked.end() &&
                        d.merge(f[i].i, f[k].i))
                        edges.emplace_back(f[k].i, f[i].i);
                    ++i;
                    ++k;
                }
            }
        }

        i = j;
    }

    if (d.set_size(0) != n)
        return 0;
    vector<int> u, v, a, b;
    for (auto const &[i, j] : edges)
    {
        u.push_back(i);
        v.push_back(j);
        if (x[i] == x[j])
        {
            b.push_back((y[i] + y[j]) >> 1);
            if (((x[i] & 3) == 2) ^ ((min(y[i], y[j]) & 3) == 2))
                a.push_back(x[i] - 1);
            else
                a.push_back(x[i] + 1);
        }
        else
        {
            a.push_back((x[i] + x[j]) >> 1);
            if (((y[i] & 3) == 2) ^ ((min(x[i], x[j]) & 3) == 2))
                b.push_back(y[i] + 1);
            else
                b.push_back(y[i] - 1);
        }
    }

    build(u, v, a, b);
    return 1;
}

Compilation message

parks.cpp: In function 'int construct_roads(std::vector<int>, std::vector<int>)':
parks.cpp:127:23: warning: comparison of integer expressions of different signedness: 'int64_t' {aka 'long int'} and 'size_t' {aka 'long unsigned int'} [-Wsign-compare]
  127 |     if (d.set_size(0) != n)
      |         ~~~~~~~~~~~~~~^~~~
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6472 KB Output is correct
5 Correct 3 ms 6484 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 4 ms 6516 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 22196 KB Output is correct
10 Correct 9 ms 8152 KB Output is correct
11 Correct 41 ms 15012 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 18 ms 11156 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 3 ms 6740 KB Output is correct
16 Correct 80 ms 22188 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6472 KB Output is correct
5 Correct 3 ms 6484 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 4 ms 6516 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 22196 KB Output is correct
10 Correct 9 ms 8152 KB Output is correct
11 Correct 41 ms 15012 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 18 ms 11156 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 3 ms 6740 KB Output is correct
16 Correct 80 ms 22188 KB Output is correct
17 Incorrect 3 ms 6484 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6472 KB Output is correct
5 Correct 3 ms 6484 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 4 ms 6516 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 22196 KB Output is correct
10 Correct 9 ms 8152 KB Output is correct
11 Correct 41 ms 15012 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 18 ms 11156 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 3 ms 6740 KB Output is correct
16 Correct 80 ms 22188 KB Output is correct
17 Incorrect 3 ms 6484 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
18 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6472 KB Output is correct
5 Correct 3 ms 6484 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 4 ms 6516 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 22196 KB Output is correct
10 Correct 9 ms 8152 KB Output is correct
11 Correct 41 ms 15012 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 18 ms 11156 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 3 ms 6740 KB Output is correct
16 Correct 80 ms 22188 KB Output is correct
17 Correct 3 ms 6484 KB Output is correct
18 Correct 3 ms 6484 KB Output is correct
19 Correct 3 ms 6484 KB Output is correct
20 Correct 248 ms 39016 KB Output is correct
21 Correct 245 ms 38864 KB Output is correct
22 Correct 255 ms 38988 KB Output is correct
23 Correct 189 ms 34208 KB Output is correct
24 Correct 139 ms 22108 KB Output is correct
25 Correct 207 ms 26344 KB Output is correct
26 Correct 148 ms 26380 KB Output is correct
27 Correct 200 ms 38596 KB Output is correct
28 Correct 198 ms 38160 KB Output is correct
29 Correct 257 ms 38064 KB Output is correct
30 Correct 251 ms 38160 KB Output is correct
31 Correct 2 ms 6484 KB Output is correct
32 Correct 15 ms 8892 KB Output is correct
33 Correct 64 ms 14376 KB Output is correct
34 Correct 216 ms 39076 KB Output is correct
35 Correct 9 ms 7740 KB Output is correct
36 Correct 41 ms 11628 KB Output is correct
37 Correct 92 ms 16568 KB Output is correct
38 Correct 90 ms 19784 KB Output is correct
39 Correct 129 ms 24228 KB Output is correct
40 Correct 171 ms 30232 KB Output is correct
41 Correct 256 ms 34320 KB Output is correct
42 Correct 271 ms 39692 KB Output is correct
43 Correct 3 ms 6484 KB Output is correct
44 Correct 3 ms 6484 KB Output is correct
45 Correct 3 ms 6484 KB Output is correct
46 Correct 3 ms 6484 KB Output is correct
47 Correct 3 ms 6484 KB Output is correct
48 Correct 3 ms 6484 KB Output is correct
49 Correct 3 ms 6484 KB Output is correct
50 Correct 3 ms 6484 KB Output is correct
51 Correct 3 ms 6484 KB Output is correct
52 Correct 3 ms 6484 KB Output is correct
53 Correct 3 ms 6484 KB Output is correct
54 Correct 4 ms 6740 KB Output is correct
55 Correct 4 ms 6868 KB Output is correct
56 Correct 95 ms 22276 KB Output is correct
57 Correct 148 ms 30160 KB Output is correct
58 Correct 144 ms 30220 KB Output is correct
59 Correct 2 ms 6484 KB Output is correct
60 Correct 3 ms 6484 KB Output is correct
61 Correct 3 ms 6484 KB Output is correct
62 Correct 178 ms 38132 KB Output is correct
63 Correct 172 ms 38176 KB Output is correct
64 Correct 179 ms 38108 KB Output is correct
65 Correct 5 ms 6952 KB Output is correct
66 Correct 7 ms 7444 KB Output is correct
67 Correct 97 ms 22144 KB Output is correct
68 Correct 175 ms 30980 KB Output is correct
69 Correct 268 ms 38116 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6472 KB Output is correct
5 Correct 3 ms 6484 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 4 ms 6516 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 22196 KB Output is correct
10 Correct 9 ms 8152 KB Output is correct
11 Correct 41 ms 15012 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 18 ms 11156 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 3 ms 6740 KB Output is correct
16 Correct 80 ms 22188 KB Output is correct
17 Correct 203 ms 38492 KB Output is correct
18 Correct 204 ms 38684 KB Output is correct
19 Correct 229 ms 38800 KB Output is correct
20 Correct 278 ms 37520 KB Output is correct
21 Correct 203 ms 34336 KB Output is correct
22 Correct 3 ms 6484 KB Output is correct
23 Correct 33 ms 11724 KB Output is correct
24 Correct 17 ms 8732 KB Output is correct
25 Correct 71 ms 14140 KB Output is correct
26 Correct 108 ms 18052 KB Output is correct
27 Correct 116 ms 22680 KB Output is correct
28 Correct 150 ms 26536 KB Output is correct
29 Correct 190 ms 31768 KB Output is correct
30 Correct 224 ms 35232 KB Output is correct
31 Correct 256 ms 39056 KB Output is correct
32 Correct 212 ms 38160 KB Output is correct
33 Correct 181 ms 38164 KB Output is correct
34 Correct 5 ms 7124 KB Output is correct
35 Correct 7 ms 7636 KB Output is correct
36 Correct 110 ms 22448 KB Output is correct
37 Correct 154 ms 30988 KB Output is correct
38 Correct 234 ms 38168 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 6484 KB Output is correct
2 Correct 3 ms 6484 KB Output is correct
3 Correct 3 ms 6484 KB Output is correct
4 Correct 3 ms 6472 KB Output is correct
5 Correct 3 ms 6484 KB Output is correct
6 Correct 3 ms 6484 KB Output is correct
7 Correct 4 ms 6516 KB Output is correct
8 Correct 3 ms 6484 KB Output is correct
9 Correct 80 ms 22196 KB Output is correct
10 Correct 9 ms 8152 KB Output is correct
11 Correct 41 ms 15012 KB Output is correct
12 Correct 11 ms 8920 KB Output is correct
13 Correct 18 ms 11156 KB Output is correct
14 Correct 3 ms 6612 KB Output is correct
15 Correct 3 ms 6740 KB Output is correct
16 Correct 80 ms 22188 KB Output is correct
17 Incorrect 3 ms 6484 KB Tree @(3, 3) appears more than once: for edges on positions 1 and 2
18 Halted 0 ms 0 KB -