Submission #800003

# Submission time Handle Problem Language Result Execution time Memory
800003 2023-08-01T09:17:06 Z 반딧불(#10081) Harvest (JOI20_harvest) C++17
100 / 100
722 ms 189188 KB
#include <bits/stdc++.h>

using namespace std;

typedef long long ll;

void input();
void getPersonInfo();
void organizeTree();
void getAppleInfo();
void inputQuery();
void solve();
void output();

int main(){
    input();
    getPersonInfo();
    organizeTree();
    getAppleInfo();
    inputQuery();
    solve();
    output();
}

int n, k, q; ll L, C;
ll a[200002], b[200002];

void input(){
    scanf("%d %d %lld %lld", &n, &k, &L, &C);
    for(int i=1; i<=n; i++) scanf("%lld", &a[i]);
    for(int i=1; i<=k; i++) scanf("%lld", &b[i]);
}

int nxt[200002]; ll delay[200002];
int par[200002]; bool inCycle[200002]; /// inCycle�� 0�� ��츸 par�� 0�� �ƴϴ�
ll dist[200002];
int cycleNum[200002], cycleIdx[200002];

vector<int> cycle[200002]; /// ����Ŭ�� ��� ���
vector<ll> cycleT[200002]; /// ���������� �� �������� ��ȸ�ϴ� �� �ɸ��� �ð�
ll cycleLength[200002]; /// �� ����Ŭ�� �ѷ�

int findNxt(ll t){ /// t ������ �
    int idx = upper_bound(a+1, a+n+1, t) - a - 1;
    if(idx == 0) idx = n;
    return idx;
}

ll findNxtTime(ll s, ll mod){
    return (s-mod+L-1)/L*L+mod;
}

void getPersonInfo(){
    for(int i=1; i<=n; i++){
        nxt[i] = findNxt((a[i]-C%L+L)%L);
        delay[i] = findNxtTime(C, (a[i] - a[nxt[i]] + L) % L);
    }

    vector<int> visited (n+1);
    for(int i=1; i<=n; i++){
        if(visited[i]) continue;
        vector<int> history;
        int x = i; ll timeSum = 0;
        while(true){
            if(visited[x]){ /// ��
                if(visited[x] == i){ /// ���ο� ����Ŭ�� ã�Ҵ�
                    int idx = find(history.begin(), history.end(), x) - history.begin();
                    /// [idx, end) �κ��� �׳� ����Ŭ�� ������ �ȴ�
                    for(int i=idx; i<(int)history.size(); i++){
                        cycle[x].push_back(history[i]);
                        cycleT[x].push_back(cycleLength[x]);
                        cycleNum[history[i]] = x, cycleIdx[history[i]] = i-idx, inCycle[history[i]] = true;
                        cycleLength[x] += delay[history[i]];
                    }
                    /// �޺κ��� �׳� Ʈ��
                    int pr = x;
                    for(int i=idx-1; i>=0; i--){
                        par[history[i]] = pr, dist[history[i]] = dist[pr] + delay[history[i]];
                        cycleNum[history[i]] = cycleNum[pr], cycleIdx[history[i]] = cycleIdx[pr];
                        pr = history[i];
                    }
                }
                else{ /// �׳� Ʈ�� �Ϻκ��� ã�Ҵ�
                    int pr = x;
                    for(int i=(int)history.size()-1; i>=0; i--){
                        par[history[i]] = pr, dist[history[i]] = dist[pr] + delay[history[i]];
                        cycleNum[history[i]] = cycleNum[pr], cycleIdx[history[i]] = cycleIdx[pr];
                        pr = history[i];
                    }
                }
                break;
            }

            visited[x] = i;
            history.push_back(x);
            timeSum += delay[x], x = nxt[x];
        }
    }



    #ifdef TEST
    printf("Person info done\n");
    for(int i=1; i<=n; i++){
        printf("%d: ", i);
        if(inCycle[i]) printf("in cycle, %d - %dth, dist %lld\n", cycleNum[i], cycleIdx[i], cycleT[cycleNum[i]][cycleIdx[i]]);
        else printf("in tree, par %d, dist %lld\n", par[i], dist[i]);
    }
    #endif // TEST
}

vector<int> child[200002];
int depth[200002], LCADB[200002][20];

void dfs(int x){
    for(auto y: child[x]){
        depth[y] = depth[x] + 1, par[y] = LCADB[y][0] = x;
        dfs(y);
    }
}

void organizeTree(){
    for(int i=1; i<=n; i++){
        if(par[i]) child[par[i]].push_back(i);
    }
    for(int i=1; i<=n; i++){
        if(inCycle[i]) dfs(i);
    }
    for(int d=1; d<20; d++) for(int i=1; i<=n; i++) LCADB[i][d] = LCADB[LCADB[i][d-1]][d-1];
}

int appleTo[200002]; ll appleDelay[200002];

void getAppleInfo(){
    for(int i=1; i<=k; i++){
        appleTo[i] = findNxt(b[i]);
        appleDelay[i] = (b[i] - a[appleTo[i]] + L) % L;
    }

    #ifdef TEST
    puts("Apple info");
    for(int i=1; i<=k; i++) printf("%d: to %d, delay %lld\n", i, appleTo[i], appleDelay[i]);
    #endif // TEST
}

/// ���� �Է��ϴ� �κ�

struct Query{
    int idx, x; ll t;
    Query(){}
    Query(int idx, int x, ll t): idx(idx), x(x), t(t){}
};
vector<Query> queries[200002];

void inputQuery(){
    scanf("%d", &q);
    for(int i=1; i<=q; i++){
        Query p;
        p.idx = i;
        scanf("%d %lld", &p.x, &p.t);
        queries[p.x].push_back(p);
    }
}

/// �� �Ʒ����� ������ ó���Ѵ�.

int getLCA(int x, int y){
    if(depth[x] > depth[y]) swap(x, y);
    for(int d=0; d<20; d++) if((depth[y]-depth[x])&(1<<d)) y = LCADB[y][d];
    if(x==y) return x;
    for(int d=19; d>=0; d--) if(LCADB[x][d] != LCADB[y][d]) x = LCADB[x][d], y = LCADB[y][d];
    return par[x];
}

int kthParent(int x, int k){
    for(int d=0; d<20; d++) if((k>>d)&1) x = LCADB[x][d];
    return x;
}


struct MergeSortTree{
    vector<ll> tree[1<<19];

    void init(int i, int l, int r, ll *A){
        if(l==r){
            tree[i] = vector<ll> (1, A[l]);
            return;
        }
        int m = (l+r)>>1;
        init(i*2, l, m, A);
        init(i*2+1, m+1, r, A);
        tree[i].resize(tree[i*2].size() + tree[i*2+1].size());
        merge(tree[i*2].begin(), tree[i*2].end(), tree[i*2+1].begin(), tree[i*2+1].end(), tree[i].begin());
    }

    ll query(int i, int l, int r, int s, int e, ll v){
        if(r<s || e<l) return 0;
        if(s<=l && r<=e){
            return upper_bound(tree[i].begin(), tree[i].end(), v) - tree[i].begin();
        }
        int m = (l+r)>>1;
        return query(i*2, l, m, s, e, v) + query(i*2+1, m+1, r, s, e, v);
    }
} mst;

vector<int> appleList[200002]; /// �� �������� �����ϴ� ��� ����
ll ans[200002];
int in[200002], out[200002], inCnt;
ll mstVal[200002];

void dfs1_search(int x){
    in[x] = inCnt + 1;
    for(auto p: appleList[x]){
        mstVal[++inCnt] = dist[x] + appleDelay[p];
    }
    for(auto y: child[x]){
        dfs1_search(y);
    }
    out[x] = inCnt;
}

void dfs1_answer(int x){
    if(!inCycle[x] && in[x] <= out[x]) for(Query &p: queries[x]){
        ans[p.idx] += mst.query(1, 1, inCnt, in[x], out[x], p.t + dist[p.x]);
    }
    for(auto p: child[x]){
        dfs1_answer(p);
    }
}

void solveCase1(int root){ /// Ʈ�� -> Ʈ���� �ذ��ϴ� �Լ�
    /// delay[i] + dist[i] <= t + dist[x]���� �����ϴٴ� ���� �̿���
    inCnt = 0;
    dfs1_search(root);
    if(!inCnt) return;
    mst.init(1, 1, inCnt, mstVal);
    dfs1_answer(root);
}

/// �� �Ʒ����� case 2

struct Fenwick{
    int n;
    ll tree[200002];

    void init(int _n){
        n = _n;
        for(int i=0; i<=n; i++) tree[i] = 0;
    }

    void add(int x, ll v){
        while(x<=n){
            tree[x] += v;
            x += x&-x;
        }
    }

    ll sum(int x){
        ll ret = 0;
        while(x){
            ret += tree[x];
            x -= x&-x;
        }
        return ret;
    }

    ll sum(int l, int r){
        if(l>r) return 0;
        return sum(r) - sum(l-1);
    }
} fenwick;

struct lazySegmentTree{
    ll sum[1<<21], lazy[1<<21];
    ll cnt[1<<21];

    void init(int i, int l, int r){
        sum[i] = lazy[i] = cnt[i] = 0;
        if(l==r) return;
        int m = (l+r)>>1;
        init(i*2, l, m);
        init(i*2+1, m+1, r);
    }

    void propagate(int i, int l, int r){
        sum[i] += lazy[i] * cnt[i];
        if(l!=r) lazy[i*2] += lazy[i], lazy[i*2+1] += lazy[i];
        lazy[i] = 0;
    }

    void update(int i, int l, int r, int x){
        propagate(i, l, r);
        if(l==r){
            sum[i]++, cnt[i]++;
            return;
        }
        int m = (l+r)>>1;
        if(x<=m) update(i*2, l, m, x), propagate(i*2+1, m+1, r);
        else update(i*2+1, m+1, r, x), propagate(i*2, l, m);
        sum[i] = sum[i*2] + sum[i*2+1], cnt[i] = cnt[i*2] + cnt[i*2+1];
    }

    void update(int i, int l, int r, int s, int e, ll v){
        propagate(i, l, r);
        if(r<s || e<l) return;
        if(s<=l && r<=e){
            lazy[i] = v;
            propagate(i, l, r);
            return;
        }
        int m = (l+r)>>1;
        update(i*2, l, m, s, e, v);
        update(i*2+1, m+1, r, s, e, v);
        sum[i] = sum[i*2] + sum[i*2+1], cnt[i] = cnt[i*2] + cnt[i*2+1];
    }

    ll query(int i, int l, int r, int s, int e){
        propagate(i, l, r);
        if(r<s || e<l) return 0;
        if(s<=l && r<=e) return sum[i];
        int m = (l+r)>>1;
        return query(i*2, l, m, s, e) + query(i*2+1, m+1, r, s, e);
    }
} segtree;

struct Event{
    int type; /// 0�̸� �� ����, 1�̸� ����
    ll val;
    int idx;
    Event(int type, ll val, int idx): type(type), val(val), idx(idx){}
    bool operator<(const Event &r)const{
        if(val != r.val) return val < r.val;
        else return type < r.type;
    }
};

vector<ll> puttingNumber[200002];

void solveCase2(int g){ /// ����Ŭ -> ����Ŭ�� �ذ��ϴ� �Լ�
    int s = (int)cycle[g].size();
    const ll MOD = cycleLength[g];

    for(int i=0; i<=s; i++) puttingNumber[i].clear();

    /// ���� ���������� ���� �� �κп� ���ؼ��� �غ�
    /// ����� ���� �������� ��� ����
    {
        vector<ll> renumber(1, -1e18);
        for(int i=1; i<s; i++){
            int x = cycle[g][i];
            for(int p: appleList[x]){
                ll v = appleDelay[p] - cycleT[g][i];
                puttingNumber[i].push_back(v);
                renumber.push_back(v);
            }
        }
        sort(renumber.begin(), renumber.end());
        renumber.erase(unique(renumber.begin(), renumber.end()), renumber.end());
        int r = (int)renumber.size() - 1;

        fenwick.init(r);
        for(int i=1; i<s; i++){
            for(ll p: puttingNumber[i]){
                int idx = lower_bound(renumber.begin(), renumber.end(), p) - renumber.begin();
                fenwick.add(idx, 1);
            }
            for(Query p: queries[cycle[g][i]]){
                int idx = upper_bound(renumber.begin(), renumber.end(), p.t - cycleT[g][i]) - renumber.begin() - 1;
                ans[p.idx] += fenwick.sum(1, idx);
            }
        }
    }

    /// �״��� ������������ ���� �ð��� ��� �����
    vector<ll> renumber;
    vector<Event> timeline;
    for(int i=0; i<s; i++){
        int x = cycle[g][i];
        for(int p: appleList[x]){
            ll v = appleDelay[p] + (i == 0 ? 0 : cycleLength[g] - cycleT[g][i]);
            renumber.push_back(v % MOD);
            timeline.push_back(Event(0, v, 0));
        }
        for(Query p: queries[x]){
            ll v = p.t - (i == 0 ? 0 : cycleT[g][i]);
            if(v<0) continue;
            timeline.push_back(Event(1, v, p.idx));
            renumber.push_back(v % MOD);
        }
    }
    sort(renumber.begin(), renumber.end());
    renumber.erase(unique(renumber.begin(), renumber.end()), renumber.end());
    sort(timeline.begin(), timeline.end());

    int r = (int)renumber.size();
    if(!r) return;
    segtree.init(1, 0, r-1);
    ll lastT = 0;
    for(Event p: timeline){
        if(lastT != p.val){ /// �ð��� ������Ʈ
            ll a1 = lastT / cycleLength[g], b1 = lastT % MOD;
            ll a2 = p.val / cycleLength[g], b2 = p.val % MOD;
            int idx1 = lower_bound(renumber.begin(), renumber.end(), b1) - renumber.begin() + 1;
            int idx2 = lower_bound(renumber.begin(), renumber.end(), b2) - renumber.begin();

            if(a1 == a2){
                segtree.update(1, 0, r-1, idx1, idx2, 1);
            }
            else{
                segtree.update(1, 0, r-1, idx1, r-1, 1);
                if(a2-a1>1) segtree.update(1, 0, r-1, 0, r-1, a2-a1-1);
                segtree.update(1, 0, r-1, 0, idx2, 1);
            }

            lastT = p.val;
        }
        int idx = lower_bound(renumber.begin(), renumber.end(), p.val%cycleLength[g]) - renumber.begin();
        if(p.type == 0){ /// �߰�
            segtree.update(1, 0, r-1, idx);
        }
        else{ /// ����
            ans[p.idx] += segtree.query(1, 0, r-1, 0, r-1);
        }
    }
}

void solve(){ /// ������ ó���ϴ� �Լ�
    /// �� ���� �ʱ�ȭ
    for(int i=1; i<=k; i++){
        int x = appleTo[i];
        appleList[x].push_back(i);
    }

    /// Session 1. Ʈ�� -> Ʈ��
    for(int i=1; i<=n; i++){
        if(inCycle[i] && !child[i].empty()) solveCase1(i);
    }

    /// Ʈ�� ������ ����Ŭ�� �Ѱ���
    for(int i=1; i<=k; i++){
        int x = appleTo[i];
        if(inCycle[x]) continue;
        appleDelay[i] += dist[x], x = cycle[cycleNum[x]][cycleIdx[x]];
        appleList[x].push_back(i);
    }

    /// Session 2. ����Ŭ -> ����Ŭ
    for(int i=1; i<=n; i++){
        if(inCycle[i] && cycleIdx[i] == 0) solveCase2(i);
    }
}

void output(){
    for(int i=1; i<=q; i++){
        printf("%lld\n", ans[i]);
    }
}

Compilation message

harvest.cpp: In function 'void input()':
harvest.cpp:29:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   29 |     scanf("%d %d %lld %lld", &n, &k, &L, &C);
      |     ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
harvest.cpp:30:34: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   30 |     for(int i=1; i<=n; i++) scanf("%lld", &a[i]);
      |                             ~~~~~^~~~~~~~~~~~~~~
harvest.cpp:31:34: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
   31 |     for(int i=1; i<=k; i++) scanf("%lld", &b[i]);
      |                             ~~~~~^~~~~~~~~~~~~~~
harvest.cpp: In function 'void inputQuery()':
harvest.cpp:156:10: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  156 |     scanf("%d", &q);
      |     ~~~~~^~~~~~~~~~
harvest.cpp:160:14: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  160 |         scanf("%d %lld", &p.x, &p.t);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 26 ms 41308 KB Output is correct
2 Correct 24 ms 41676 KB Output is correct
3 Correct 26 ms 42340 KB Output is correct
4 Correct 26 ms 42280 KB Output is correct
5 Correct 27 ms 42884 KB Output is correct
6 Correct 26 ms 42964 KB Output is correct
7 Correct 25 ms 42992 KB Output is correct
8 Correct 23 ms 42324 KB Output is correct
9 Correct 23 ms 42352 KB Output is correct
10 Correct 23 ms 42292 KB Output is correct
11 Correct 30 ms 42324 KB Output is correct
12 Correct 23 ms 41940 KB Output is correct
13 Correct 25 ms 42316 KB Output is correct
14 Correct 25 ms 41920 KB Output is correct
15 Correct 28 ms 42708 KB Output is correct
16 Correct 23 ms 42752 KB Output is correct
17 Correct 24 ms 42836 KB Output is correct
18 Correct 23 ms 42764 KB Output is correct
19 Correct 25 ms 42792 KB Output is correct
20 Correct 24 ms 42752 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 292 ms 60064 KB Output is correct
2 Correct 212 ms 86256 KB Output is correct
3 Correct 218 ms 90632 KB Output is correct
4 Correct 414 ms 108896 KB Output is correct
5 Correct 223 ms 123048 KB Output is correct
6 Correct 202 ms 123012 KB Output is correct
7 Correct 168 ms 82656 KB Output is correct
8 Correct 155 ms 82600 KB Output is correct
9 Correct 417 ms 99244 KB Output is correct
10 Correct 381 ms 96900 KB Output is correct
11 Correct 425 ms 99308 KB Output is correct
12 Correct 420 ms 99260 KB Output is correct
13 Correct 462 ms 99356 KB Output is correct
14 Correct 374 ms 96936 KB Output is correct
15 Correct 401 ms 90376 KB Output is correct
16 Correct 246 ms 102776 KB Output is correct
17 Correct 203 ms 102632 KB Output is correct
18 Correct 133 ms 64184 KB Output is correct
19 Correct 117 ms 64284 KB Output is correct
20 Correct 188 ms 83500 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 26 ms 41308 KB Output is correct
2 Correct 24 ms 41676 KB Output is correct
3 Correct 26 ms 42340 KB Output is correct
4 Correct 26 ms 42280 KB Output is correct
5 Correct 27 ms 42884 KB Output is correct
6 Correct 26 ms 42964 KB Output is correct
7 Correct 25 ms 42992 KB Output is correct
8 Correct 23 ms 42324 KB Output is correct
9 Correct 23 ms 42352 KB Output is correct
10 Correct 23 ms 42292 KB Output is correct
11 Correct 30 ms 42324 KB Output is correct
12 Correct 23 ms 41940 KB Output is correct
13 Correct 25 ms 42316 KB Output is correct
14 Correct 25 ms 41920 KB Output is correct
15 Correct 28 ms 42708 KB Output is correct
16 Correct 23 ms 42752 KB Output is correct
17 Correct 24 ms 42836 KB Output is correct
18 Correct 23 ms 42764 KB Output is correct
19 Correct 25 ms 42792 KB Output is correct
20 Correct 24 ms 42752 KB Output is correct
21 Correct 292 ms 60064 KB Output is correct
22 Correct 212 ms 86256 KB Output is correct
23 Correct 218 ms 90632 KB Output is correct
24 Correct 414 ms 108896 KB Output is correct
25 Correct 223 ms 123048 KB Output is correct
26 Correct 202 ms 123012 KB Output is correct
27 Correct 168 ms 82656 KB Output is correct
28 Correct 155 ms 82600 KB Output is correct
29 Correct 417 ms 99244 KB Output is correct
30 Correct 381 ms 96900 KB Output is correct
31 Correct 425 ms 99308 KB Output is correct
32 Correct 420 ms 99260 KB Output is correct
33 Correct 462 ms 99356 KB Output is correct
34 Correct 374 ms 96936 KB Output is correct
35 Correct 401 ms 90376 KB Output is correct
36 Correct 246 ms 102776 KB Output is correct
37 Correct 203 ms 102632 KB Output is correct
38 Correct 133 ms 64184 KB Output is correct
39 Correct 117 ms 64284 KB Output is correct
40 Correct 188 ms 83500 KB Output is correct
41 Correct 437 ms 129992 KB Output is correct
42 Correct 259 ms 94056 KB Output is correct
43 Correct 273 ms 105152 KB Output is correct
44 Correct 430 ms 129936 KB Output is correct
45 Correct 481 ms 187912 KB Output is correct
46 Correct 482 ms 188672 KB Output is correct
47 Correct 492 ms 189188 KB Output is correct
48 Correct 445 ms 186844 KB Output is correct
49 Correct 415 ms 186972 KB Output is correct
50 Correct 396 ms 148556 KB Output is correct
51 Correct 385 ms 147764 KB Output is correct
52 Correct 468 ms 130424 KB Output is correct
53 Correct 722 ms 132092 KB Output is correct
54 Correct 475 ms 129828 KB Output is correct
55 Correct 409 ms 113428 KB Output is correct
56 Correct 643 ms 170552 KB Output is correct
57 Correct 515 ms 171400 KB Output is correct
58 Correct 633 ms 172184 KB Output is correct
59 Correct 469 ms 169056 KB Output is correct
60 Correct 524 ms 169376 KB Output is correct
61 Correct 475 ms 169280 KB Output is correct
62 Correct 663 ms 115152 KB Output is correct
63 Correct 369 ms 127640 KB Output is correct
64 Correct 360 ms 127740 KB Output is correct
65 Correct 393 ms 127868 KB Output is correct
66 Correct 340 ms 127856 KB Output is correct
67 Correct 353 ms 127860 KB Output is correct
68 Correct 332 ms 127324 KB Output is correct
69 Correct 461 ms 126068 KB Output is correct
70 Correct 439 ms 120264 KB Output is correct
71 Correct 448 ms 132976 KB Output is correct
72 Correct 464 ms 146308 KB Output is correct