Submission #791268

# Submission time Handle Problem Language Result Execution time Memory
791268 2023-07-23T20:38:29 Z hugo_pm Worst Reporter 4 (JOI21_worst_reporter4) C++17
79 / 100
747 ms 39536 KB
#include <bits/stdc++.h>
// Begin treap.h
#include <bits/stdc++.h>
using namespace std;
using ll = long long;

struct Croix {
	ll key, val;
	bool operator<(const Croix& oth) const {
		if (key != oth.key)
			return key < oth.key;
		return val < oth.val; // ├á v├®rifier + INF ou -INF dans merge ?
	}
	bool operator==(const Croix &oth) const {
		return (key == oth.key) && (val == oth.val);
	}
};

string to_string(Croix c) {
	return "(" + to_string(c.key) + ", " + to_string(c.val) + ")";
}

namespace treap {
	const ll INF = 3e18;
	mt19937 rng(42);
	int gen_prio() {
		return uniform_int_distribution<int>(1, 1e9)(rng);
	}
	struct node {
		Croix x;
		int priority, size = 1;
		ll to_prop = 0;
		node *left = nullptr, *right = nullptr, *parent = nullptr;
		node(Croix _x, node* _parent) : x(_x), parent(_parent) {
			priority = gen_prio();
		}
		void update() {
			size = 1;
			if (left) {
				left->parent = this;
				size += left->size;
			}
			if (right) {
				right->parent = this;
				size += right->size;
			}
		}
	};
	void push(node* root) {
		if (root == nullptr) return;
		root->x.val += root->to_prop;
		if (root->left) root->left->to_prop += root->to_prop;
		if (root->right) root->right->to_prop += root->to_prop;
		root->to_prop = 0;
	}
	node* singleton(Croix c, node* from) {
		return new node(c, from);
	}
	node* min_element(node* root) {
		push(root);
		if (root == nullptr || root->left == nullptr) {
			return root;
		}
		return min_element(root->left);
	}
	node* max_element(node* root) {
		push(root);
		if (root == nullptr || root->right == nullptr) {
			return root;
		}
		return max_element(root->right);
	}
	void clear(node* root) {
		if (root != nullptr) {
			clear(root->left);
			clear(root->right);
			delete root;
			root = nullptr;
		}
	}
	struct iterator {
		using iterator_category = std::bidirectional_iterator_tag;
		using difference_type   = std::ptrdiff_t;
		using value_type        = const Croix;
		using pointer           = Croix*;
		using reference         = const Croix;

		iterator(node* ptr, bool end) : m_ptr(ptr), m_end(end) {}
		reference operator*() const { return m_ptr->x; }
		pointer operator->() { return &(m_ptr->x); }
		iterator& operator++();  
		iterator operator++(int) { iterator tmp = *this; ++(*this); return tmp; }
		iterator& operator--(); 
		iterator operator--(int) { iterator tmp = *this; --(*this); return tmp; }
		friend bool operator== (const iterator& a, const iterator& b) {
			return (a.m_ptr == b.m_ptr) && (a.m_end == b.m_end);
		};
		friend bool operator!= (const iterator& a, const iterator& b) {
			return (a.m_ptr != b.m_ptr) || (a.m_end != b.m_end);
		};  

		node* m_ptr;
		bool m_end;
	};
	iterator& iterator::operator++() {
		if (m_ptr == nullptr || m_end) return *this;
		if (m_ptr->right != nullptr) {
			m_ptr = min_element(m_ptr->right);
		} else {
			auto cur = m_ptr, parent = m_ptr->parent;
			while (parent != nullptr && cur == parent->right) {
				cur = parent;
				parent = parent->parent;
			}
			if (parent != nullptr)
				m_ptr = parent;
			else
				m_end = true;
		}
		return *this;
	}
	iterator& iterator::operator--() {
		if (m_ptr == nullptr) return *this;
		if (m_end) { m_end = false; return *this; }
		if (m_ptr->left != nullptr) {
			m_ptr = max_element(m_ptr->left);
		} else {
			auto parent = m_ptr->parent;
			while (parent != nullptr && m_ptr == parent->left) {
				m_ptr = parent;
				parent = parent->parent;
			}
			m_ptr = parent;
		}
		return *this;
	}

	pair<node*, node*> split(const Croix splitter, bool equalToLeft, node* root) {
		if (root == nullptr) {
			return {nullptr, nullptr};
		}
		root->parent = nullptr;
		push(root);
		bool curInLeft = (root->x < splitter || (root->x == splitter && equalToLeft));
		if (curInLeft) {
			auto [RL, RR] = split(splitter, equalToLeft, root->right);
			root->right = RL;
			root->update();
			return {root, RR};
		} else {
			auto [LL, LR] = split(splitter, equalToLeft, root->left);
			root->left = LR;
			root->update();
			return {LL, root};
		}
	}

	node* merge(node* L, node* R) {
		if (L == nullptr || R == nullptr) {
			return (L ? L : R);
		}
		node* root;
		if (L->priority > R->priority) {
			L->right = merge(L->right, R);
			root = L;
		} else {
			R->left = merge(L, R->left);
			root = R;
		}
		root->update();
		return root;
	}

	node* lower_bound(const Croix val, node* root) {
		if (root == nullptr) return nullptr;
		push(root);
		if (root->x < val) {
			return lower_bound(val, root->right);
		} else {
			node* ret = lower_bound(val, root->left);
			return (ret ? ret : root);
		}
	}

	void add(const ll until, const ll delta, node* root) {
		if (root == nullptr) return;
		push(root);
		if (root->x.key > until) {
			return add(until, delta, root->left);
		}
		if (root->left) {
			root->left->to_prop += delta;
		}
		root->x.val += delta;
		add(until, delta, root->right);
	}

	class tree {
		public:
		using iterator = treap::iterator;
		size_t size() { return (m_root ? m_root->size : 0); }
		bool empty() { return m_root == nullptr; }
		void swap(tree &oth) { std::swap(m_root, oth.m_root); }
		void clear() { treap::clear(m_root); }
		iterator begin() { return iterator(min_element(m_root), m_root == nullptr); }
		iterator end()   { return iterator(max_element(m_root), true); }
		pair<iterator, bool> insert(Croix x) {
			auto [L, R] = treap::split(x, false, m_root);
			node* M = singleton(x, nullptr);
			m_root = merge(merge(L, M), R);
			return {iterator(M, false), true};
		}
		void erase(Croix x) {
			auto [leftStrict, rightLarge] = treap::split(x, false, m_root);
			auto [toDel, rightStrict] = treap::split(x, true, rightLarge);
			treap::clear(toDel);
			m_root = merge(leftStrict, rightStrict);
		}
		void erase(iterator it) {
			erase(*it);
		}
		iterator lower_bound(Croix x) {
			node* ptr = treap::lower_bound(x, m_root);
			return (ptr ? iterator(ptr, false) : end());
		}
		void add(ll until, ll delta) {
			treap::add(until, delta, m_root);
		}
		private:
		node* m_root = nullptr;
	};
};
// End treap.h
#define int long long
using namespace std;

#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define rep(i, a, b) for(int i = (a); i < (b); i++)
#define sz(v) ((int)((v).size()))

template<typename T>
void chmax(T &x, const T &v) { if (x < v) x = v; }
template<typename T>
void chmin(T &x, const T &v) { if (x > v) x = v; }

using pii = pair<int, int>;
using vi = vector<int>;

string to_string(string s) { return s; }
template <typename T> string to_string(T v) {
	bool first = true;
	string res = "[";
	for (const auto &x : v) {
		if (!first)
			res += ", ";
		first = false;
		res += to_string(x);
	}
	res += "]";
	return res;
}

template <typename A, typename B>
string to_string(pair<A, B> p) {
  return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}

void dbg_out() { cout << endl; }
template <typename Head, typename... Tail> void dbg_out(Head H, Tail... T) {
	cout << ' ' << to_string(H);
	dbg_out(T...);
}

#ifdef DEBUG
#define dbg(...) cout << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif

const int INF = 3e18;
const int MAX_N = 2e5 + 5;
int nbNode;
treap::tree profile[MAX_N];
int costDel[MAX_N], hauteur[MAX_N];
vector<int> children[MAX_N];

void insere(treap::tree &dest, Croix c) {
	auto it = dest.lower_bound(c);
	if (it.m_end || c.val > it->val) {
		it = dest.insert(c).first;
		while (it != dest.begin() && prev(it)->val <= c.val) {
			dest.erase(prev(it));
			it = dest.lower_bound(c);
		}
	}
}
void merge(int iDest, int iSrc) {
	if (profile[iDest].size() < profile[iSrc].size()) {
		profile[iDest].swap(profile[iSrc]);
	}
	auto &dest = profile[iDest], &src = profile[iSrc];
	assert(!dest.empty());
	// Calcule les pts bleus
	vector<Croix> cand;
	for (Croix c : src) {
		auto it = dest.lower_bound({c.key, -INF});
		int nxRed = (!it.m_end ? it->val : 0);
		cand.push_back({c.key, c.val + nxRed});
	}
	// Am├®liore les pts rouges
	int previously = 0;
	vector<Croix> revSrc(src.begin(), src.end());
	reverse(all(revSrc));
	for (Croix c : revSrc) {
		dest.add(c.key, c.val - previously);
		previously = c.val;
	}
	src.clear();
	// Insère les pts bleus
	for (Croix c : cand) {
		insere(dest, c);
	}
}

const int FAKE = MAX_N-1;
void dfs(int node) {
	int takeNode = costDel[node];
	for (int child : children[node]) {
		dfs(child);
		auto it = profile[child].lower_bound({hauteur[node], -INF});
		if (!it.m_end) {
			takeNode += it->val;
		}
		merge(node, child);
	}
	insere(profile[node], {hauteur[node], takeNode});
	// dbg(node, vector<Croix>(all(profile[node])));
	// dbg(takeNode, dontTake);
}
signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin >> nbNode;
	int totCost = 0;
	rep(i, 0, nbNode) {
		int p;
		cin >> p >> hauteur[i] >> costDel[i];
		totCost += costDel[i];
		if (i > 0) {
			children[p-1].push_back(i);
		}
	}
	dfs(0);
	cout << totCost - profile[0].begin()->val << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 12 ms 5472 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 6 ms 5148 KB Output is correct
8 Correct 12 ms 5532 KB Output is correct
9 Correct 8 ms 5288 KB Output is correct
10 Correct 6 ms 5156 KB Output is correct
11 Correct 4 ms 5204 KB Output is correct
12 Correct 8 ms 5712 KB Output is correct
13 Correct 7 ms 5588 KB Output is correct
14 Correct 8 ms 5460 KB Output is correct
15 Correct 7 ms 5480 KB Output is correct
16 Correct 14 ms 5460 KB Output is correct
17 Correct 9 ms 5280 KB Output is correct
18 Correct 5 ms 5204 KB Output is correct
19 Correct 8 ms 5572 KB Output is correct
20 Correct 7 ms 5332 KB Output is correct
21 Correct 5 ms 5332 KB Output is correct
22 Correct 7 ms 5460 KB Output is correct
23 Correct 5 ms 5204 KB Output is correct
24 Correct 8 ms 5588 KB Output is correct
25 Correct 6 ms 5460 KB Output is correct
26 Correct 4 ms 5672 KB Output is correct
27 Correct 7 ms 5588 KB Output is correct
28 Correct 6 ms 5716 KB Output is correct
29 Correct 7 ms 5844 KB Output is correct
30 Correct 8 ms 5844 KB Output is correct
31 Correct 8 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 12 ms 5472 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 6 ms 5148 KB Output is correct
8 Correct 12 ms 5532 KB Output is correct
9 Correct 8 ms 5288 KB Output is correct
10 Correct 6 ms 5156 KB Output is correct
11 Correct 4 ms 5204 KB Output is correct
12 Correct 8 ms 5712 KB Output is correct
13 Correct 7 ms 5588 KB Output is correct
14 Correct 8 ms 5460 KB Output is correct
15 Correct 7 ms 5480 KB Output is correct
16 Correct 14 ms 5460 KB Output is correct
17 Correct 9 ms 5280 KB Output is correct
18 Correct 5 ms 5204 KB Output is correct
19 Correct 8 ms 5572 KB Output is correct
20 Correct 7 ms 5332 KB Output is correct
21 Correct 5 ms 5332 KB Output is correct
22 Correct 7 ms 5460 KB Output is correct
23 Correct 5 ms 5204 KB Output is correct
24 Correct 8 ms 5588 KB Output is correct
25 Correct 6 ms 5460 KB Output is correct
26 Correct 4 ms 5672 KB Output is correct
27 Correct 7 ms 5588 KB Output is correct
28 Correct 6 ms 5716 KB Output is correct
29 Correct 7 ms 5844 KB Output is correct
30 Correct 8 ms 5844 KB Output is correct
31 Correct 8 ms 5844 KB Output is correct
32 Correct 11 ms 5472 KB Output is correct
33 Correct 631 ms 24664 KB Output is correct
34 Correct 340 ms 13884 KB Output is correct
35 Correct 588 ms 23308 KB Output is correct
36 Correct 328 ms 13772 KB Output is correct
37 Correct 142 ms 13388 KB Output is correct
38 Correct 107 ms 13364 KB Output is correct
39 Correct 255 ms 31836 KB Output is correct
40 Correct 243 ms 31544 KB Output is correct
41 Correct 132 ms 31500 KB Output is correct
42 Correct 249 ms 24044 KB Output is correct
43 Correct 236 ms 23872 KB Output is correct
44 Correct 747 ms 23856 KB Output is correct
45 Correct 388 ms 13220 KB Output is correct
46 Correct 85 ms 12740 KB Output is correct
47 Correct 331 ms 27560 KB Output is correct
48 Correct 204 ms 20644 KB Output is correct
49 Correct 120 ms 20640 KB Output is correct
50 Correct 298 ms 23744 KB Output is correct
51 Correct 114 ms 11344 KB Output is correct
52 Correct 346 ms 28624 KB Output is correct
53 Correct 190 ms 21564 KB Output is correct
54 Correct 95 ms 31508 KB Output is correct
55 Correct 224 ms 30628 KB Output is correct
56 Correct 187 ms 36160 KB Output is correct
57 Correct 178 ms 38932 KB Output is correct
58 Correct 331 ms 39520 KB Output is correct
59 Correct 325 ms 39536 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 12 ms 5472 KB Output is correct
6 Correct 8 ms 5204 KB Output is correct
7 Correct 6 ms 5148 KB Output is correct
8 Correct 12 ms 5532 KB Output is correct
9 Correct 8 ms 5288 KB Output is correct
10 Correct 6 ms 5156 KB Output is correct
11 Correct 4 ms 5204 KB Output is correct
12 Correct 8 ms 5712 KB Output is correct
13 Correct 7 ms 5588 KB Output is correct
14 Correct 8 ms 5460 KB Output is correct
15 Correct 7 ms 5480 KB Output is correct
16 Correct 14 ms 5460 KB Output is correct
17 Correct 9 ms 5280 KB Output is correct
18 Correct 5 ms 5204 KB Output is correct
19 Correct 8 ms 5572 KB Output is correct
20 Correct 7 ms 5332 KB Output is correct
21 Correct 5 ms 5332 KB Output is correct
22 Correct 7 ms 5460 KB Output is correct
23 Correct 5 ms 5204 KB Output is correct
24 Correct 8 ms 5588 KB Output is correct
25 Correct 6 ms 5460 KB Output is correct
26 Correct 4 ms 5672 KB Output is correct
27 Correct 7 ms 5588 KB Output is correct
28 Correct 6 ms 5716 KB Output is correct
29 Correct 7 ms 5844 KB Output is correct
30 Correct 8 ms 5844 KB Output is correct
31 Correct 8 ms 5844 KB Output is correct
32 Correct 11 ms 5472 KB Output is correct
33 Correct 631 ms 24664 KB Output is correct
34 Correct 340 ms 13884 KB Output is correct
35 Correct 588 ms 23308 KB Output is correct
36 Correct 328 ms 13772 KB Output is correct
37 Correct 142 ms 13388 KB Output is correct
38 Correct 107 ms 13364 KB Output is correct
39 Correct 255 ms 31836 KB Output is correct
40 Correct 243 ms 31544 KB Output is correct
41 Correct 132 ms 31500 KB Output is correct
42 Correct 249 ms 24044 KB Output is correct
43 Correct 236 ms 23872 KB Output is correct
44 Correct 747 ms 23856 KB Output is correct
45 Correct 388 ms 13220 KB Output is correct
46 Correct 85 ms 12740 KB Output is correct
47 Correct 331 ms 27560 KB Output is correct
48 Correct 204 ms 20644 KB Output is correct
49 Correct 120 ms 20640 KB Output is correct
50 Correct 298 ms 23744 KB Output is correct
51 Correct 114 ms 11344 KB Output is correct
52 Correct 346 ms 28624 KB Output is correct
53 Correct 190 ms 21564 KB Output is correct
54 Correct 95 ms 31508 KB Output is correct
55 Correct 224 ms 30628 KB Output is correct
56 Correct 187 ms 36160 KB Output is correct
57 Correct 178 ms 38932 KB Output is correct
58 Correct 331 ms 39520 KB Output is correct
59 Correct 325 ms 39536 KB Output is correct
60 Correct 2 ms 4948 KB Output is correct
61 Incorrect 2 ms 4948 KB Output isn't correct
62 Halted 0 ms 0 KB -