Submission #791260

# Submission time Handle Problem Language Result Execution time Memory
791260 2023-07-23T20:13:51 Z hugo_pm Worst Reporter 4 (JOI21_worst_reporter4) C++17
79 / 100
796 ms 39580 KB
#include <bits/stdc++.h>
// Begin treap.h
#include <bits/stdc++.h>
using namespace std;
using ll = long long;

struct Croix {
	ll key, val;
	bool operator<(const Croix& oth) const {
		if (key != oth.key)
			return key < oth.key;
		return val < oth.val; // ├á v├®rifier + INF ou -INF dans merge ?
	}
	bool operator==(const Croix &oth) const {
		return (key == oth.key) && (val == oth.val);
	}
};

string to_string(Croix c) {
	return "(" + to_string(c.key) + ", " + to_string(c.val) + ")";
}

namespace treap {
	const ll INF = 3e18;
	mt19937 rng(42);
	int gen_prio() {
		return uniform_int_distribution<int>(1, 1e9)(rng);
	}
	struct node {
		Croix x;
		int priority, size = 1;
		ll to_prop = 0;
		node *left = nullptr, *right = nullptr, *parent = nullptr;
		node(Croix _x, node* _parent) : x(_x), parent(_parent) {
			priority = gen_prio();
		}
		void update() {
			size = 1;
			if (left) {
				left->parent = this;
				size += left->size;
			}
			if (right) {
				right->parent = this;
				size += right->size;
			}
		}
	};
	void push(node* root) {
		if (root == nullptr) return;
		root->x.val += root->to_prop;
		if (root->left) root->left->to_prop += root->to_prop;
		if (root->right) root->right->to_prop += root->to_prop;
		root->to_prop = 0;
	}
	node* singleton(Croix c, node* from) {
		return new node(c, from);
	}
	node* min_element(node* root) {
		push(root);
		if (root == nullptr || root->left == nullptr) {
			return root;
		}
		return min_element(root->left);
	}
	node* max_element(node* root) {
		push(root);
		if (root == nullptr || root->right == nullptr) {
			return root;
		}
		return max_element(root->right);
	}
	void clear(node* root) {
		if (root != nullptr) {
			clear(root->left);
			clear(root->right);
			delete root;
			root = nullptr;
		}
	}
	struct iterator {
		using iterator_category = std::bidirectional_iterator_tag;
		using difference_type   = std::ptrdiff_t;
		using value_type        = const Croix;
		using pointer           = Croix*;
		using reference         = const Croix;

		iterator(node* ptr, bool end) : m_ptr(ptr), m_end(end) {}
		reference operator*() const { return m_ptr->x; }
		pointer operator->() { return &(m_ptr->x); }
		iterator& operator++();  
		iterator operator++(int) { iterator tmp = *this; ++(*this); return tmp; }
		iterator& operator--(); 
		iterator operator--(int) { iterator tmp = *this; --(*this); return tmp; }
		friend bool operator== (const iterator& a, const iterator& b) {
			return (a.m_ptr == b.m_ptr) && (a.m_end == b.m_end);
		};
		friend bool operator!= (const iterator& a, const iterator& b) {
			return (a.m_ptr != b.m_ptr) || (a.m_end != b.m_end);
		};  

		node* m_ptr;
		bool m_end;
	};
	iterator& iterator::operator++() {
		if (m_ptr == nullptr || m_end) return *this;
		if (m_ptr->right != nullptr) {
			m_ptr = min_element(m_ptr->right);
		} else {
			auto cur = m_ptr, parent = m_ptr->parent;
			while (parent != nullptr && cur == parent->right) {
				cur = parent;
				parent = parent->parent;
			}
			if (parent != nullptr)
				m_ptr = parent;
			else
				m_end = true;
		}
		return *this;
	}
	iterator& iterator::operator--() {
		if (m_ptr == nullptr) return *this;
		if (m_end) { m_end = false; return *this; }
		if (m_ptr->left != nullptr) {
			m_ptr = max_element(m_ptr->left);
		} else {
			auto parent = m_ptr->parent;
			while (parent != nullptr && m_ptr == parent->left) {
				m_ptr = parent;
				parent = parent->parent;
			}
			m_ptr = parent;
		}
		return *this;
	}

	pair<node*, node*> split(const Croix splitter, bool equalToLeft, node* root) {
		if (root == nullptr) {
			return {nullptr, nullptr};
		}
		root->parent = nullptr;
		push(root);
		bool curInLeft = (root->x < splitter || (root->x == splitter && equalToLeft));
		if (curInLeft) {
			auto [RL, RR] = split(splitter, equalToLeft, root->right);
			root->right = RL;
			root->update();
			return {root, RR};
		} else {
			auto [LL, LR] = split(splitter, equalToLeft, root->left);
			root->left = LR;
			root->update();
			return {LL, root};
		}
	}

	node* merge(node* L, node* R) {
		if (L == nullptr || R == nullptr) {
			return (L ? L : R);
		}
		node* root;
		if (L->priority > R->priority) {
			L->right = merge(L->right, R);
			root = L;
		} else {
			R->left = merge(L, R->left);
			root = R;
		}
		root->update();
		return root;
	}

	node* lower_bound(const Croix val, node* root) {
		if (root == nullptr) return nullptr;
		push(root);
		if (root->x < val) {
			return lower_bound(val, root->right);
		} else {
			node* ret = lower_bound(val, root->left);
			return (ret ? ret : root);
		}
	}

	void add(const ll until, const ll delta, node* root) {
		if (root == nullptr) return;
		push(root);
		if (root->x.key > until) {
			return add(until, delta, root->left);
		}
		if (root->left) {
			root->left->to_prop += delta;
		}
		root->x.val += delta;
		add(until, delta, root->right);
	}

	class tree {
		public:
		using iterator = treap::iterator;
		size_t size() { return (m_root ? m_root->size : 0); }
		bool empty() { return m_root == nullptr; }
		void swap(tree &oth) { std::swap(m_root, oth.m_root); }
		void clear() { treap::clear(m_root); }
		iterator begin() { return iterator(min_element(m_root), m_root == nullptr); }
		iterator end()   { return iterator(max_element(m_root), true); }
		pair<iterator, bool> insert(Croix x) {
			auto [L, R] = treap::split(x, false, m_root);
			node* M = singleton(x, nullptr);
			m_root = merge(merge(L, M), R);
			return {iterator(M, false), true};
		}
		void erase(Croix x) {
			auto [leftStrict, rightLarge] = treap::split(x, false, m_root);
			auto [toDel, rightStrict] = treap::split(x, true, rightLarge);
			treap::clear(toDel);
			m_root = merge(leftStrict, rightStrict);
		}
		void erase(iterator it) {
			erase(*it);
		}
		iterator lower_bound(Croix x) {
			node* ptr = treap::lower_bound(x, m_root);
			return (ptr ? iterator(ptr, false) : end());
		}
		void add(ll until, ll delta) {
			treap::add(until, delta, m_root);
		}
		private:
		node* m_root = nullptr;
	};
};
// End treap.h
#define int long long
using namespace std;

#define all(v) (v).begin(), (v).end()
#define rall(v) (v).rbegin(), (v).rend()
#define rep(i, a, b) for(int i = (a); i < (b); i++)
#define sz(v) ((int)((v).size()))

template<typename T>
void chmax(T &x, const T &v) { if (x < v) x = v; }
template<typename T>
void chmin(T &x, const T &v) { if (x > v) x = v; }

using pii = pair<int, int>;
using vi = vector<int>;

string to_string(string s) { return s; }
template <typename T> string to_string(T v) {
	bool first = true;
	string res = "[";
	for (const auto &x : v) {
		if (!first)
			res += ", ";
		first = false;
		res += to_string(x);
	}
	res += "]";
	return res;
}

template <typename A, typename B>
string to_string(pair<A, B> p) {
  return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}

void dbg_out() { cout << endl; }
template <typename Head, typename... Tail> void dbg_out(Head H, Tail... T) {
	cout << ' ' << to_string(H);
	dbg_out(T...);
}

#ifdef DEBUG
#define dbg(...) cout << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif

const int INF = 3e18;
const int MAX_N = 2e5 + 5;
int nbNode;
treap::tree profile[MAX_N];
int costDel[MAX_N], hauteur[MAX_N];
vector<int> children[MAX_N];

void insere(treap::tree &dest, Croix c) {
	auto it = dest.lower_bound(c);
	if (it == dest.end() || c.val > it->val) {
		it = dest.insert(c).first;
		while (it != dest.begin() && prev(it)->val <= c.val) {
			dest.erase(prev(it));
			it = dest.lower_bound(c);
		}
	}
}
void merge(int iDest, int iSrc) {
	if (profile[iDest].size() < profile[iSrc].size()) {
		profile[iDest].swap(profile[iSrc]);
	}
	auto &dest = profile[iDest], &src = profile[iSrc];
	assert(!dest.empty());
	// Calcule les pts bleus
	vector<Croix> cand;
	for (Croix c : src) {
		auto it = dest.lower_bound({c.key, -INF});
		int nxRed = (it != dest.end() ? it->val : 0);
		cand.push_back({c.key, c.val + nxRed});
	}
	// Am├®liore les pts rouges
	int previously = 0;
	vector<Croix> revSrc(src.begin(), src.end());
	reverse(all(revSrc));
	for (Croix c : revSrc) {
		dest.add(c.key, c.val - previously);
		previously = c.val;
	}
	src.clear();
	// Insère les pts bleus
	for (Croix c : cand) {
		insere(dest, c);
	}
}

const int FAKE = MAX_N-1;
void dfs(int node) {
	int takeNode = costDel[node];
	for (int child : children[node]) {
		dfs(child);
		auto it = profile[child].lower_bound({hauteur[node], -INF});
		if (it != profile[child].end()) {
			takeNode += it->val;
		}
		merge(node, child);
	}
	insere(profile[node], {hauteur[node], takeNode});
	// dbg(node, vector<Croix>(all(profile[node])));
	// dbg(takeNode, dontTake);
}
signed main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin >> nbNode;
	int totCost = 0;
	rep(i, 0, nbNode) {
		int p;
		cin >> p >> hauteur[i] >> costDel[i];
		totCost += costDel[i];
		if (i > 0) {
			children[p-1].push_back(i);
		}
	}
	dfs(0);
	cout << totCost - profile[0].begin()->val << '\n';
}
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 12 ms 5508 KB Output is correct
6 Correct 8 ms 5188 KB Output is correct
7 Correct 6 ms 5204 KB Output is correct
8 Correct 12 ms 5428 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 6 ms 5204 KB Output is correct
11 Correct 5 ms 5256 KB Output is correct
12 Correct 8 ms 5716 KB Output is correct
13 Correct 8 ms 5588 KB Output is correct
14 Correct 7 ms 5460 KB Output is correct
15 Correct 8 ms 5504 KB Output is correct
16 Correct 14 ms 5460 KB Output is correct
17 Correct 9 ms 5204 KB Output is correct
18 Correct 4 ms 5204 KB Output is correct
19 Correct 8 ms 5588 KB Output is correct
20 Correct 7 ms 5332 KB Output is correct
21 Correct 5 ms 5332 KB Output is correct
22 Correct 8 ms 5504 KB Output is correct
23 Correct 5 ms 5204 KB Output is correct
24 Correct 8 ms 5588 KB Output is correct
25 Correct 6 ms 5460 KB Output is correct
26 Correct 5 ms 5620 KB Output is correct
27 Correct 7 ms 5588 KB Output is correct
28 Correct 7 ms 5716 KB Output is correct
29 Correct 6 ms 5844 KB Output is correct
30 Correct 11 ms 5936 KB Output is correct
31 Correct 9 ms 5844 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 12 ms 5508 KB Output is correct
6 Correct 8 ms 5188 KB Output is correct
7 Correct 6 ms 5204 KB Output is correct
8 Correct 12 ms 5428 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 6 ms 5204 KB Output is correct
11 Correct 5 ms 5256 KB Output is correct
12 Correct 8 ms 5716 KB Output is correct
13 Correct 8 ms 5588 KB Output is correct
14 Correct 7 ms 5460 KB Output is correct
15 Correct 8 ms 5504 KB Output is correct
16 Correct 14 ms 5460 KB Output is correct
17 Correct 9 ms 5204 KB Output is correct
18 Correct 4 ms 5204 KB Output is correct
19 Correct 8 ms 5588 KB Output is correct
20 Correct 7 ms 5332 KB Output is correct
21 Correct 5 ms 5332 KB Output is correct
22 Correct 8 ms 5504 KB Output is correct
23 Correct 5 ms 5204 KB Output is correct
24 Correct 8 ms 5588 KB Output is correct
25 Correct 6 ms 5460 KB Output is correct
26 Correct 5 ms 5620 KB Output is correct
27 Correct 7 ms 5588 KB Output is correct
28 Correct 7 ms 5716 KB Output is correct
29 Correct 6 ms 5844 KB Output is correct
30 Correct 11 ms 5936 KB Output is correct
31 Correct 9 ms 5844 KB Output is correct
32 Correct 12 ms 5460 KB Output is correct
33 Correct 673 ms 24608 KB Output is correct
34 Correct 349 ms 13900 KB Output is correct
35 Correct 634 ms 23328 KB Output is correct
36 Correct 354 ms 13772 KB Output is correct
37 Correct 147 ms 13444 KB Output is correct
38 Correct 102 ms 13432 KB Output is correct
39 Correct 257 ms 31632 KB Output is correct
40 Correct 252 ms 31644 KB Output is correct
41 Correct 133 ms 31540 KB Output is correct
42 Correct 248 ms 23856 KB Output is correct
43 Correct 242 ms 23832 KB Output is correct
44 Correct 796 ms 23860 KB Output is correct
45 Correct 414 ms 13264 KB Output is correct
46 Correct 88 ms 12940 KB Output is correct
47 Correct 349 ms 27608 KB Output is correct
48 Correct 209 ms 20704 KB Output is correct
49 Correct 119 ms 20632 KB Output is correct
50 Correct 333 ms 23684 KB Output is correct
51 Correct 126 ms 11384 KB Output is correct
52 Correct 349 ms 28588 KB Output is correct
53 Correct 197 ms 21472 KB Output is correct
54 Correct 93 ms 31544 KB Output is correct
55 Correct 235 ms 30732 KB Output is correct
56 Correct 205 ms 36160 KB Output is correct
57 Correct 189 ms 39064 KB Output is correct
58 Correct 366 ms 39548 KB Output is correct
59 Correct 343 ms 39580 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 4948 KB Output is correct
2 Correct 3 ms 4948 KB Output is correct
3 Correct 2 ms 4948 KB Output is correct
4 Correct 2 ms 4948 KB Output is correct
5 Correct 12 ms 5508 KB Output is correct
6 Correct 8 ms 5188 KB Output is correct
7 Correct 6 ms 5204 KB Output is correct
8 Correct 12 ms 5428 KB Output is correct
9 Correct 8 ms 5204 KB Output is correct
10 Correct 6 ms 5204 KB Output is correct
11 Correct 5 ms 5256 KB Output is correct
12 Correct 8 ms 5716 KB Output is correct
13 Correct 8 ms 5588 KB Output is correct
14 Correct 7 ms 5460 KB Output is correct
15 Correct 8 ms 5504 KB Output is correct
16 Correct 14 ms 5460 KB Output is correct
17 Correct 9 ms 5204 KB Output is correct
18 Correct 4 ms 5204 KB Output is correct
19 Correct 8 ms 5588 KB Output is correct
20 Correct 7 ms 5332 KB Output is correct
21 Correct 5 ms 5332 KB Output is correct
22 Correct 8 ms 5504 KB Output is correct
23 Correct 5 ms 5204 KB Output is correct
24 Correct 8 ms 5588 KB Output is correct
25 Correct 6 ms 5460 KB Output is correct
26 Correct 5 ms 5620 KB Output is correct
27 Correct 7 ms 5588 KB Output is correct
28 Correct 7 ms 5716 KB Output is correct
29 Correct 6 ms 5844 KB Output is correct
30 Correct 11 ms 5936 KB Output is correct
31 Correct 9 ms 5844 KB Output is correct
32 Correct 12 ms 5460 KB Output is correct
33 Correct 673 ms 24608 KB Output is correct
34 Correct 349 ms 13900 KB Output is correct
35 Correct 634 ms 23328 KB Output is correct
36 Correct 354 ms 13772 KB Output is correct
37 Correct 147 ms 13444 KB Output is correct
38 Correct 102 ms 13432 KB Output is correct
39 Correct 257 ms 31632 KB Output is correct
40 Correct 252 ms 31644 KB Output is correct
41 Correct 133 ms 31540 KB Output is correct
42 Correct 248 ms 23856 KB Output is correct
43 Correct 242 ms 23832 KB Output is correct
44 Correct 796 ms 23860 KB Output is correct
45 Correct 414 ms 13264 KB Output is correct
46 Correct 88 ms 12940 KB Output is correct
47 Correct 349 ms 27608 KB Output is correct
48 Correct 209 ms 20704 KB Output is correct
49 Correct 119 ms 20632 KB Output is correct
50 Correct 333 ms 23684 KB Output is correct
51 Correct 126 ms 11384 KB Output is correct
52 Correct 349 ms 28588 KB Output is correct
53 Correct 197 ms 21472 KB Output is correct
54 Correct 93 ms 31544 KB Output is correct
55 Correct 235 ms 30732 KB Output is correct
56 Correct 205 ms 36160 KB Output is correct
57 Correct 189 ms 39064 KB Output is correct
58 Correct 366 ms 39548 KB Output is correct
59 Correct 343 ms 39580 KB Output is correct
60 Correct 3 ms 4948 KB Output is correct
61 Incorrect 3 ms 4948 KB Output isn't correct
62 Halted 0 ms 0 KB -