Submission #787466

# Submission time Handle Problem Language Result Execution time Memory
787466 2023-07-19T08:17:12 Z onjo0127 Hamburg Steak (JOI20_hamburg) C++17
15 / 100
360 ms 41124 KB
#include <bits/stdc++.h>
using namespace std;
using pii = pair<int, int>;
using vi = vector<int>;
using vpi = vector<pii>;
using vvi = vector<vi>;
const vector<pii> EMP = {};

int f(vi &X, int x) { return lower_bound(X.begin(), X.end(), x) - X.begin() + 1; }

vi X, Y; int XS, YS;

vvi rem(vvi &A, int x, int y) {
	vvi ret;
	for(auto& it: A) if(it[2] < x || x < it[0] || it[3] < y || y < it[1]) ret.push_back(it);
	return ret;
}

vvi intersect_line(vvi &A, int x, int y) {
	vvi ret;
	if(x) for(auto& it: A) if(it[0] <= x || x <= it[2]) ret.push_back(it);
	if(y) for(auto& it: A) if(it[1] <= y || y <= it[3]) ret.push_back(it);
	return ret;
}

vpi sol4(vvi &A) {
	int mnr = XS, mxl = 1, mnu = YS, mxd = 1;
	for(auto& it: A) {
		mnr = min(mnr, it[2]);
		mxl = max(mxl, it[0]);
		mnu = min(mnu, it[3]);
		mxd = max(mxd, it[1]);
	}
	for(auto& it: A) if(mnr < it[0] && it[2] < mxl && mnu < it[1] && it[3] < mxd) return EMP;

	vvi L = intersect_line(A, mnr, 0);

	sort(L.begin(), L.end(), [&](vi p, vi q) { return p[3] < q[3]; });
	vi D_mnr(YS + 1, XS + 1);
	for(auto& it: L) D_mnr[it[3]] = min(D_mnr[it[3]], it[2]);
	for(int i=1; i<=YS; i++) D_mnr[i] = min(D_mnr[i-1], D_mnr[i]);

	sort(L.begin(), L.end(), [&](vi p, vi q) { return p[1] > q[1]; });
	vi U_mnr(YS + 2, XS + 1);
	for(auto& it: L) U_mnr[it[1]] = min(U_mnr[it[1]], it[2]);
	for(int i=YS; i>=1; i--) U_mnr[i] = min(U_mnr[i+1], U_mnr[i]);

	int new_mnr = XS + 1;
	for(auto& it: A) if(mnr < it[0]) new_mnr = min(new_mnr, it[2]);

	int only_D_mnr = XS + 1;
	vvi D = intersect_line(A, 0, mnu);
	for(auto& it: D) if(mnr < it[0] && it[3] < mxd) only_D_mnr = min(only_D_mnr, it[2]);

	vvi UD = intersect_line(D, 0, mxd);
	sort(UD.begin(), UD.end(), [&](vi p, vi q) { return p[0] > q[0]; });
	vi UD_mnr(XS + 2, XS + 1);
	for(auto& it: UD) UD_mnr[it[0]] = min(UD_mnr[it[0]], it[2]);
	for(int i=XS; i>=1; i--) UD_mnr[i] = min(UD_mnr[i+1], UD_mnr[i]);

	vvi R = intersect_line(A, mxl, 0); sort(R.begin(), R.end(), [&](vi p, vi q) { return p[0] > q[0]; });
	vvi RU = intersect_line(R, 0, mxd); sort(RU.begin(), RU.end(), [&](vi p, vi q) { return p[0] > q[0]; });
	vvi RD = intersect_line(R, 0, mnu); sort(RD.begin(), RD.end(), [&](vi p, vi q) { return p[0] > q[0]; });

	vi RU_mxd(XS + 2, 0);
	for(auto& it: RU) if(it[1] > mnu) RU_mxd[it[0]] = max(RU_mxd[it[0]], it[1]);
	for(int i=XS; i>=1; i--) RU_mxd[i] = max(RU_mxd[i+1], RU_mxd[i]);

	vi RD_mnu(XS + 2, YS + 1);
	for(auto& it: RD) if(it[3] < mxd) RD_mnu[it[0]] = min(RD_mnu[it[0]], it[3]);
	for(int i=XS; i>=1; i--) RD_mnu[i] = min(RD_mnu[i+1], RD_mnu[i]);

	int only_R_mxd = 0, only_R_mnu = YS + 1;
	for(auto& it: R) if(it[1] > mnu && it[3] < mxd) {
		only_R_mxd = max(only_R_mxd, it[1]);
		only_R_mnu = min(only_R_mnu, it[3]);
	}

	for(int ly=2; ly<YS; ly++) {
		int ux = min(U_mnr[ly + 1], new_mnr);
		int dx = min({D_mnr[ly - 1], only_D_mnr, UD_mnr[ux + 1]});
		int r_mxd = max(RU_mxd[ux + 1], only_R_mxd);
		int r_mnu = min(RD_mnu[dx + 1], only_R_mnu);
		if(r_mxd <= r_mnu) return {{mnr, ly}, {ux, mxd}, {dx, mnu}, {mxl, r_mxd}};
	}

	return EMP;
}

vpi sol(vvi &A, int K) {
	int mnr = XS, mxl = 1, mnu = YS, mxd = 1;
	for(auto& it: A) {
		mnr = min(mnr, it[2]);
		mxl = max(mxl, it[0]);
		mnu = min(mnu, it[3]);
		mxd = max(mxd, it[1]);
	}
	if(K == 1) {	
		if(mxl <= mnr && mxd <= mnu) return {{mxl, mxd}};
		return EMP;
	}
	if(K == 2) {
		vvi B; vpi S;
		for(auto y: {mxd, mnu}) {
			B = rem(A, mxl, y);
			S = sol(B, 1);
			if(S.size()) return {{mxl, y}, S[0]};
		}
		return EMP;
	}
	if(K == 3) {
		vvi B; vpi S;
		for(auto x: {mxl, mnr}) for(auto y: {mxd, mnu}) {
			B = rem(A, x, y);
			S = sol(B, 2);
			if(S.size()) return {{x, y}, S[0], S[1]};
		}
		return EMP;
	}
	if(K == 4) {
		vvi B; vpi S;
		for(auto x: {mxl, mnr}) for(auto y: {mxd, mnu}) {
			B = rem(A, x, y);
			S = sol(B, 3);
			if(S.size()) return {{x, y}, S[0], S[1], S[2]};
		}
		S = sol4(A);
		if(S.size()) return S;
		for(auto& it: A) it = {XS - it[2] + 1, it[1], XS - it[0] + 1, it[3]};
		S = sol4(A);
		if(S.size()) {
			for(auto& [x, y]: S) x = XS - x + 1;
			return S;
		}
		return EMP;
	}
}

int main() {
	vvi A; 
	int N, K; scanf("%d%d", &N, &K);
	for(int i=0; i<N; i++) {
		vi H(4);
		for(int j=0; j<4; j++) scanf("%d", &H[j]);
		A.push_back(H);
		X.push_back(H[0]);
		X.push_back(H[2]);
		Y.push_back(H[1]);
		Y.push_back(H[3]);
	}
	sort(X.begin(), X.end()); X.resize(unique(X.begin(), X.end()) - X.begin()); XS = X.size();
	sort(Y.begin(), Y.end()); Y.resize(unique(Y.begin(), Y.end()) - Y.begin()); YS = Y.size();
	for(auto& it: A) {
		it[0] = f(X, it[0]);
		it[1] = f(Y, it[1]);
		it[2] = f(X, it[2]);
		it[3] = f(Y, it[3]);
	}
	vpi ans;
	for(int k=1; k<=K && ans.empty(); k++) ans = sol(A, K);
	assert(!ans.empty());
	while((int)ans.size() < K) ans.push_back({1, 1});
	for(auto& [x, y]: ans) printf("%d %d\n", X[x-1], Y[y-1]);
	return 0;
}

Compilation message

hamburg.cpp: In function 'vpi sol(vvi&, int)':
hamburg.cpp:137:1: warning: control reaches end of non-void function [-Wreturn-type]
  137 | }
      | ^
hamburg.cpp: In function 'int main()':
hamburg.cpp:141:17: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  141 |  int N, K; scanf("%d%d", &N, &K);
      |            ~~~~~^~~~~~~~~~~~~~~~
hamburg.cpp:144:31: warning: ignoring return value of 'int scanf(const char*, ...)' declared with attribute 'warn_unused_result' [-Wunused-result]
  144 |   for(int j=0; j<4; j++) scanf("%d", &H[j]);
      |                          ~~~~~^~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 468 KB Output is correct
2 Correct 2 ms 468 KB Output is correct
3 Correct 2 ms 468 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 3 ms 596 KB Output is correct
3 Correct 2 ms 468 KB Output is correct
4 Correct 2 ms 568 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 2 ms 568 KB Output is correct
3 Correct 2 ms 596 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 2 ms 596 KB Output is correct
6 Correct 3 ms 560 KB Output is correct
7 Correct 4 ms 596 KB Output is correct
8 Correct 3 ms 724 KB Output is correct
9 Correct 3 ms 664 KB Output is correct
10 Correct 3 ms 696 KB Output is correct
11 Correct 3 ms 724 KB Output is correct
12 Correct 2 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 488 KB Output is correct
2 Correct 2 ms 468 KB Output is correct
3 Correct 3 ms 536 KB Output is correct
4 Correct 2 ms 500 KB Output is correct
5 Correct 3 ms 596 KB Output is correct
6 Correct 2 ms 568 KB Output is correct
7 Correct 3 ms 596 KB Output is correct
8 Correct 7 ms 820 KB Output is correct
9 Correct 3 ms 596 KB Output is correct
10 Correct 4 ms 820 KB Output is correct
11 Correct 5 ms 852 KB Output is correct
12 Correct 3 ms 700 KB Output is correct
13 Correct 2 ms 596 KB Output is correct
14 Runtime error 57 ms 2496 KB Execution killed with signal 6
15 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 2 ms 468 KB Output is correct
2 Correct 2 ms 468 KB Output is correct
3 Correct 2 ms 468 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 272 ms 15672 KB Output is correct
6 Correct 287 ms 15612 KB Output is correct
7 Correct 265 ms 15680 KB Output is correct
8 Correct 263 ms 15680 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 3 ms 596 KB Output is correct
3 Correct 2 ms 468 KB Output is correct
4 Correct 2 ms 568 KB Output is correct
5 Correct 273 ms 21228 KB Output is correct
6 Correct 275 ms 24384 KB Output is correct
7 Correct 260 ms 20820 KB Output is correct
8 Correct 282 ms 29708 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 512 KB Output is correct
2 Correct 2 ms 568 KB Output is correct
3 Correct 2 ms 596 KB Output is correct
4 Correct 2 ms 468 KB Output is correct
5 Correct 2 ms 596 KB Output is correct
6 Correct 3 ms 560 KB Output is correct
7 Correct 4 ms 596 KB Output is correct
8 Correct 3 ms 724 KB Output is correct
9 Correct 3 ms 664 KB Output is correct
10 Correct 3 ms 696 KB Output is correct
11 Correct 3 ms 724 KB Output is correct
12 Correct 2 ms 596 KB Output is correct
13 Correct 270 ms 23680 KB Output is correct
14 Correct 268 ms 23280 KB Output is correct
15 Correct 281 ms 24764 KB Output is correct
16 Correct 270 ms 20832 KB Output is correct
17 Correct 267 ms 22368 KB Output is correct
18 Correct 268 ms 19136 KB Output is correct
19 Correct 270 ms 25416 KB Output is correct
20 Correct 360 ms 41124 KB Output is correct
21 Correct 287 ms 28752 KB Output is correct
22 Correct 303 ms 40044 KB Output is correct
23 Correct 321 ms 38860 KB Output is correct
24 Correct 304 ms 35904 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 488 KB Output is correct
2 Correct 2 ms 468 KB Output is correct
3 Correct 3 ms 536 KB Output is correct
4 Correct 2 ms 500 KB Output is correct
5 Correct 3 ms 596 KB Output is correct
6 Correct 2 ms 568 KB Output is correct
7 Correct 3 ms 596 KB Output is correct
8 Correct 7 ms 820 KB Output is correct
9 Correct 3 ms 596 KB Output is correct
10 Correct 4 ms 820 KB Output is correct
11 Correct 5 ms 852 KB Output is correct
12 Correct 3 ms 700 KB Output is correct
13 Correct 2 ms 596 KB Output is correct
14 Runtime error 57 ms 2496 KB Execution killed with signal 6
15 Halted 0 ms 0 KB -