Submission #780653

# Submission time Handle Problem Language Result Execution time Memory
780653 2023-07-12T11:26:42 Z Sami_Massah Sumtree (INOI20_sumtree) C++17
100 / 100
2261 ms 303656 KB
#include <bits/stdc++.h>
using namespace std;


const int maxn = 5e5 + 12, maxk = 2e5 + 12, lg = 18, mod = 1e9 + 7;
int n, bs, tz, tms, h[maxk], col[maxk], par[maxk][lg], sz[maxk], st[maxk], en[maxk],  sum1[maxk * 3], sum2[maxk * 3];
long long ans, fact[maxn], rfact[maxn];
set <int> Q[maxk * 3];
vector <int> conn[maxk];
bitset <maxn> marked, zero;
long long tav(long long a, long long b){
    if(b == 0)
        return 1;
    a %= mod;
    long long x = tav(a * a % mod, b / 2);
    if(b % 2)
        return x * a % mod;
    return x % mod;
}

void update_tree1(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        sum1[u] = k;
        return;
    }
    int mid = (L + R) / 2;
    update_tree1(l, r, u * 2, k, L, mid);
    update_tree1(l, r, u * 2 + 1, k, mid + 1, R);
    sum1[u] = sum1[u * 2] + sum1[u * 2 + 1];
}
void update_tree2(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        sum2[u] = k;
        return;
    }
    int mid = (L + R) / 2;
    update_tree2(l, r, u * 2, k, L, mid);
    update_tree2(l, r, u * 2 + 1, k, mid + 1, R);
    sum2[u] = sum2[u * 2] + sum2[u * 2 + 1];
}
int get_sum1(int l, int r, int u, int L = 0, int R = n){
    if(r < L || R < l)
        return 0;
    if(l <= L && R <= r)
        return sum1[u];
    int mid = (L + R) / 2;
    return get_sum1(l, r, u * 2, L, mid) + get_sum1(l, r, u * 2 + 1, mid + 1, R);
}
int get_sum2(int l, int r, int u, int L = 0, int R = n){
    if(r < L || R < l)
        return 0;
    if(l <= L && R <= r)
        return sum2[u];
    int mid = (L + R) / 2;
    return get_sum2(l, r, u * 2, L, mid) + get_sum2(l, r, u * 2 + 1, mid + 1, R);
}
int kpar(int u, int k){
    for(int i = 0; i < lg; i++)
        if((k >> i) & 1)
            u = par[u][i];
    return u;

}
void dfs_set(int u){
    marked[u] = 1;
    sz[u] = 1;
    st[u] = tms;
    tms += 1;
    for(int i = 0; i + 1 < lg; i++)
        par[u][i + 1] = par[par[u][i]][i];
    for(int v: conn[u])
        if(!marked[v]){
            par[v][0] = u;
            h[v] = h[u] + 1;
            dfs_set(v);
            sz[u] += sz[v];

        }
    en[u] = tms - 1;
}
void add_to_tree(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        Q[u].insert(h[k]);
        return;
    }
    int mid = (L + R) / 2;
    add_to_tree(l, r, u * 2, k, L, mid);
    add_to_tree(l, r, u * 2 + 1, k, mid + 1, R);
}
void erase_from_tree(int l, int r, int u, int k, int L = 0, int R = n){
    if(r < L || R < l)
        return;
    if(l <= L && R <= r){
        Q[u].erase(Q[u].lower_bound(h[k]));
        return;
    }
    int mid = (L + R) / 2;
    erase_from_tree(l, r, u * 2, k, L, mid);
    erase_from_tree(l, r, u * 2 + 1, k, mid + 1, R);
}
int find_pd(int l, int r, int u, int L = 0, int R = n){
    if(r < L || R < l)
        return -1;
    if(l <= L && R <= r){
        if(Q[u].size() == 0)
            return -1;
        return *Q[u].rbegin();
    }
    auto x = -1;
    if(Q[u].size())
        x = *Q[u].rbegin();
    int mid = (L + R) / 2;
    return max({find_pd(l, r, u * 2, L, mid), find_pd(l, r, u * 2 + 1, mid + 1, R), x});
}
long long get_c(int a, int b){
    if(a < b)
        return 0;
    return fact[a] * (rfact[b] * rfact[a - b] % mod) % mod;

}
void add_tree(int u, int k){
    int pd = find_pd(st[u], st[u], 1);
   // cout << pd << endl;
    pd = kpar(u, h[u] - pd);
 //   cout << u << ' ' << pd << endl;
   // cout << u << ' ' << pd << endl;
    col[u] = k;
    if(u != 1){
        int x = get_sum1(st[pd] + 1, en[pd], 1);
        int d = get_sum2(st[pd] + 1, en[pd], 1);

        if(zero[pd] == 0){
            x = sz[pd] - x;
            d = col[pd] - d;
            long long f = get_c(d + x - 1, x - 1);
            ans = ans * tav(f, mod - 2) % mod;
        }
    }
  //  cout << ans << endl;
    int x = get_sum1(st[u], en[u], 1);
    int d = get_sum2(st[u], en[u], 1);
    update_tree1(st[u], st[u], 1, sz[u] - x);
    update_tree2(st[u], st[u], 1, k - d);
    add_to_tree(st[u] + 1, en[u], 1, u);
   // cout << st[pd] << '-' << en[pd] << endl;
    if(k < d){
        zero[u] = 1;
        tz += 1;
    }
    else{
 //       cout << x << ' ' << sz[u] << endl;
        x = sz[u] - x;
        d = k - d;
      //  cout << x << ' ' << d << endl;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * f % mod;
    }
   // cout << ans << endl;

    if(u != 1){
        int x = get_sum1(st[pd] + 1, en[pd], 1);
        int d = get_sum2(st[pd] + 1, en[pd], 1);
        update_tree1(st[pd], st[pd], 1, sz[pd] - x);
        update_tree2(st[pd], st[pd], 1, col[pd] - d);
        if(col[pd] < d){
            tz += (1 - zero[pd]);
            zero[pd] = 1;
        }
        else{
            x = sz[pd] - x;
            d = col[pd] - d;
            tz -= zero[pd];
            zero[pd] = 0;
    //        cout << x << ' ' << d << endl;
            long long f = get_c(d + x - 1, x - 1);
            ans = ans * f % mod;
        }
    }
    //cout << ans << endl << endl;
}
void remove_tree(int u){

    int pd = find_pd(st[u], st[u], 1);
   // cout << pd << endl;
    pd = kpar(u, h[u] - pd);
   // cout << u << ' ' << pd << endl;
    int x = get_sum1(st[pd] + 1, en[pd], 1);
    int d = get_sum2(st[pd] + 1, en[pd], 1);

    if(zero[pd] == 0){
        x = sz[pd] - x;
        d = col[pd] - d;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * tav(f, mod - 2) % mod;
    }

    x = get_sum1(st[u] + 1, en[u], 1);
    d = get_sum2(st[u] + 1, en[u], 1);

    update_tree1(st[u], st[u], 1, 0);
    update_tree2(st[u], st[u], 1, 0);
    erase_from_tree(st[u] + 1, en[u], 1, u);
    //cout << get_sum1(1, n, 1) << endl;
    if(col[u] < d){
        tz -= zero[u];
        zero[u] = 0;
    }
    else{
        tz -= zero[u];
        zero[u] = 0;
        x = sz[u] - x;
        d = col[u] - d;
    //    cout << d << ' ' << x << endl;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * tav(f, mod - 2) % mod;
    }
    col[u] = -1;


    x = get_sum1(st[pd] + 1, en[pd], 1);
    d = get_sum2(st[pd] + 1, en[pd], 1);

    update_tree1(st[pd], st[pd], 1, sz[pd] - x);
    update_tree2(st[pd], st[pd], 1, col[pd] - d);

    if(col[pd] < d){
        tz += (1 - zero[pd]);
        zero[pd] = 1;
    }
    else{
        tz -= (zero[pd]);
        zero[pd] = 0;
        x = sz[pd] - x;
        d = col[pd] - d;
      //  cout << d << ' ' << x << endl;
        long long f = get_c(d + x - 1, x - 1);
        ans = ans * f % mod;
    }
}
int main(){
    ios_base::sync_with_stdio(false), cin.tie(0);
    memset(col, -1, sizeof col);
    col[0] = 0;
    fact[0] = 1;
    for(int i = 1; i < maxn; i++)
        fact[i] = fact[i - 1] * i % mod;
    for(int i = 0; i < maxn; i++)
        rfact[i] = tav(fact[i], mod - 2) % mod;
    cin >> n >> bs;
    for(int i = 0; i < n - 1; i++){
        int a, b;
        cin >> a >> b;
        conn[a].push_back(b);
        conn[b].push_back(a);
    }
    cout << endl;
    dfs_set(1);

    ans = 1;
    add_tree(1, bs);
    cout << ans << "\n";
    int q;
    cin >> q;
    for(int i = 0; i < q; i++){
        int a;
        int b, c;
        cin >> a;
        if(a == 1){
            cin >> b >> c;
            add_tree(b, c);
        }
        else{
            cin >> b;
            remove_tree(b);
        }
        if(tz)
            cout << 0 << "\n";
        else
            cout << ans << "\n";

    }





}
# Verdict Execution time Memory Grader output
1 Correct 251 ms 73720 KB Output is correct
2 Correct 229 ms 73716 KB Output is correct
3 Correct 284 ms 73668 KB Output is correct
4 Correct 254 ms 73752 KB Output is correct
5 Correct 202 ms 69772 KB Output is correct
6 Correct 119 ms 42532 KB Output is correct
7 Correct 131 ms 42176 KB Output is correct
8 Correct 121 ms 42276 KB Output is correct
9 Correct 239 ms 66056 KB Output is correct
10 Correct 303 ms 65960 KB Output is correct
11 Correct 269 ms 66056 KB Output is correct
12 Correct 259 ms 64996 KB Output is correct
13 Correct 249 ms 71356 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 120 ms 41800 KB Output is correct
2 Correct 124 ms 41820 KB Output is correct
3 Correct 122 ms 41796 KB Output is correct
4 Correct 122 ms 41820 KB Output is correct
5 Correct 125 ms 41908 KB Output is correct
6 Correct 127 ms 42144 KB Output is correct
7 Correct 137 ms 42196 KB Output is correct
8 Correct 128 ms 42116 KB Output is correct
9 Correct 132 ms 42384 KB Output is correct
10 Correct 130 ms 42516 KB Output is correct
11 Correct 132 ms 42552 KB Output is correct
12 Correct 125 ms 42316 KB Output is correct
13 Correct 133 ms 42524 KB Output is correct
14 Correct 134 ms 42416 KB Output is correct
15 Correct 132 ms 42836 KB Output is correct
16 Correct 126 ms 42336 KB Output is correct
17 Correct 129 ms 42448 KB Output is correct
18 Correct 134 ms 42332 KB Output is correct
19 Correct 132 ms 42324 KB Output is correct
20 Correct 130 ms 42156 KB Output is correct
21 Correct 124 ms 42132 KB Output is correct
22 Correct 124 ms 41836 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 278 ms 79624 KB Output is correct
2 Correct 368 ms 84860 KB Output is correct
3 Correct 337 ms 80608 KB Output is correct
4 Correct 527 ms 94092 KB Output is correct
5 Correct 1147 ms 146076 KB Output is correct
6 Correct 124 ms 43104 KB Output is correct
7 Correct 123 ms 42328 KB Output is correct
8 Correct 130 ms 42656 KB Output is correct
9 Correct 673 ms 76868 KB Output is correct
10 Correct 614 ms 75208 KB Output is correct
11 Correct 558 ms 74644 KB Output is correct
12 Correct 606 ms 75168 KB Output is correct
13 Correct 2261 ms 303656 KB Output is correct
14 Correct 2229 ms 303392 KB Output is correct
15 Correct 2245 ms 303396 KB Output is correct
16 Correct 2185 ms 303420 KB Output is correct
17 Correct 2171 ms 303340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 863 ms 71648 KB Output is correct
2 Correct 830 ms 71660 KB Output is correct
3 Correct 906 ms 71624 KB Output is correct
4 Correct 859 ms 71676 KB Output is correct
5 Correct 964 ms 70396 KB Output is correct
6 Correct 806 ms 71664 KB Output is correct
7 Correct 684 ms 57768 KB Output is correct
8 Correct 710 ms 57840 KB Output is correct
9 Correct 929 ms 71680 KB Output is correct
10 Correct 841 ms 71644 KB Output is correct
11 Correct 818 ms 71660 KB Output is correct
12 Correct 683 ms 57764 KB Output is correct
13 Correct 546 ms 54772 KB Output is correct
14 Correct 611 ms 55880 KB Output is correct
15 Correct 620 ms 56136 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 251 ms 73720 KB Output is correct
2 Correct 229 ms 73716 KB Output is correct
3 Correct 284 ms 73668 KB Output is correct
4 Correct 254 ms 73752 KB Output is correct
5 Correct 202 ms 69772 KB Output is correct
6 Correct 119 ms 42532 KB Output is correct
7 Correct 131 ms 42176 KB Output is correct
8 Correct 121 ms 42276 KB Output is correct
9 Correct 239 ms 66056 KB Output is correct
10 Correct 303 ms 65960 KB Output is correct
11 Correct 269 ms 66056 KB Output is correct
12 Correct 259 ms 64996 KB Output is correct
13 Correct 249 ms 71356 KB Output is correct
14 Correct 120 ms 41800 KB Output is correct
15 Correct 124 ms 41820 KB Output is correct
16 Correct 122 ms 41796 KB Output is correct
17 Correct 122 ms 41820 KB Output is correct
18 Correct 125 ms 41908 KB Output is correct
19 Correct 127 ms 42144 KB Output is correct
20 Correct 137 ms 42196 KB Output is correct
21 Correct 128 ms 42116 KB Output is correct
22 Correct 132 ms 42384 KB Output is correct
23 Correct 130 ms 42516 KB Output is correct
24 Correct 132 ms 42552 KB Output is correct
25 Correct 125 ms 42316 KB Output is correct
26 Correct 133 ms 42524 KB Output is correct
27 Correct 134 ms 42416 KB Output is correct
28 Correct 132 ms 42836 KB Output is correct
29 Correct 126 ms 42336 KB Output is correct
30 Correct 129 ms 42448 KB Output is correct
31 Correct 134 ms 42332 KB Output is correct
32 Correct 132 ms 42324 KB Output is correct
33 Correct 130 ms 42156 KB Output is correct
34 Correct 124 ms 42132 KB Output is correct
35 Correct 124 ms 41836 KB Output is correct
36 Correct 278 ms 79624 KB Output is correct
37 Correct 368 ms 84860 KB Output is correct
38 Correct 337 ms 80608 KB Output is correct
39 Correct 527 ms 94092 KB Output is correct
40 Correct 1147 ms 146076 KB Output is correct
41 Correct 124 ms 43104 KB Output is correct
42 Correct 123 ms 42328 KB Output is correct
43 Correct 130 ms 42656 KB Output is correct
44 Correct 673 ms 76868 KB Output is correct
45 Correct 614 ms 75208 KB Output is correct
46 Correct 558 ms 74644 KB Output is correct
47 Correct 606 ms 75168 KB Output is correct
48 Correct 2261 ms 303656 KB Output is correct
49 Correct 2229 ms 303392 KB Output is correct
50 Correct 2245 ms 303396 KB Output is correct
51 Correct 2185 ms 303420 KB Output is correct
52 Correct 2171 ms 303340 KB Output is correct
53 Correct 863 ms 71648 KB Output is correct
54 Correct 830 ms 71660 KB Output is correct
55 Correct 906 ms 71624 KB Output is correct
56 Correct 859 ms 71676 KB Output is correct
57 Correct 964 ms 70396 KB Output is correct
58 Correct 806 ms 71664 KB Output is correct
59 Correct 684 ms 57768 KB Output is correct
60 Correct 710 ms 57840 KB Output is correct
61 Correct 929 ms 71680 KB Output is correct
62 Correct 841 ms 71644 KB Output is correct
63 Correct 818 ms 71660 KB Output is correct
64 Correct 683 ms 57764 KB Output is correct
65 Correct 546 ms 54772 KB Output is correct
66 Correct 611 ms 55880 KB Output is correct
67 Correct 620 ms 56136 KB Output is correct
68 Correct 123 ms 41780 KB Output is correct
69 Correct 120 ms 41808 KB Output is correct
70 Correct 1025 ms 79248 KB Output is correct
71 Correct 1027 ms 79280 KB Output is correct
72 Correct 988 ms 79232 KB Output is correct
73 Correct 987 ms 79404 KB Output is correct
74 Correct 1200 ms 79720 KB Output is correct
75 Correct 1109 ms 75400 KB Output is correct
76 Correct 849 ms 71648 KB Output is correct
77 Correct 953 ms 72156 KB Output is correct
78 Correct 983 ms 73380 KB Output is correct
79 Correct 979 ms 75476 KB Output is correct
80 Correct 1077 ms 74732 KB Output is correct
81 Correct 1071 ms 75580 KB Output is correct
82 Correct 692 ms 68012 KB Output is correct
83 Correct 687 ms 75000 KB Output is correct
84 Correct 703 ms 74276 KB Output is correct
85 Correct 688 ms 74220 KB Output is correct