Submission #77971

# Submission time Handle Problem Language Result Execution time Memory
77971 2018-10-01T14:13:23 Z autumn_eel Circle selection (APIO18_circle_selection) C++14
100 / 100
859 ms 37428 KB
#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	double minx=inf,miny=inf,maxx=-inf,maxy=-inf;
	for(int i=l;i<r+1;i++){
		minx=min(minx,a[i].x-a[i].r);
		miny=min(miny,a[i].y-a[i].r);
		maxx=max(maxx,a[i].x+a[i].r);
		maxy=max(maxy,a[i].y+a[i].r);
	}
	if(maxx-minx>maxy-miny)k=0;
	else k=1;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x,y,r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}
/*
#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}
#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}#include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef double db;
using namespace std;
 
const int N=300010;
const db inf=1e20,eps=1e-3,alpha=acos(-1)/3;
int n,rt,ans[N];
db x,y,r;
struct P{ db x,y,r; int id; }cur,a[N];
struct Tr{ int ls,rs; db x1,y1,x2,y2; P c; }T[N];
 
bool cmpx(const P &a,const P &b){ return a.x<b.x; }
bool cmpy(const P &a,const P &b){ return a.y<b.y; }
bool cmpr(const P &a,const P &b){ return (a.r==b.r) ? a.id<b.id : a.r>b.r; }
 
void F(int x,int y){
	T[x].x1=min(T[x].x1,T[y].x1); T[x].x2=max(T[x].x2,T[y].x2);
	T[x].y1=min(T[x].y1,T[y].y1); T[x].y2=max(T[x].y2,T[y].y2);
}
 
void upd(int x){
	if (ans[T[x].c.id]) T[x].x1=T[x].y1=inf,T[x].x2=T[x].y2=-inf;
	else{
		T[x].x1=T[x].c.x-T[x].c.r; T[x].x2=T[x].c.x+T[x].c.r;
		T[x].y1=T[x].c.y-T[x].c.r; T[x].y2=T[x].c.y+T[x].c.r;
	}
	if (T[x].ls) F(x,T[x].ls);
	if (T[x].rs) F(x,T[x].rs);
}
 
int build(int l,int r,int k){
	if (l>r) return 0;
	int mid=(l+r)>>1; nth_element(a+l,a+mid,a+r+1,k?cmpy:cmpx);
	T[mid].c=a[mid];
	T[mid].ls=build(l,mid-1,k^1); T[mid].rs=build(mid+1,r,k^1);
	upd(mid); return mid;
}
 
db sqr(db x){ return x*x; }
bool Out(int x){ return (T[x].x2<cur.x-cur.r-eps) || (T[x].x1>cur.x+cur.r+eps) || (T[x].y2<cur.y-cur.r-eps) || (T[x].y1>cur.y+cur.r+eps); }
bool chk(P &a){ return sqr(a.x-cur.x)+sqr(a.y-cur.y)<=sqr(a.r+cur.r)+eps; }
 
void que(int x){
	if (Out(x)) return;
	if (!ans[T[x].c.id] && chk(T[x].c)) ans[T[x].c.id]=cur.id;
	if (T[x].ls) que(T[x].ls);
	if (T[x].rs) que(T[x].rs);
}
 
int main(){
	//~ freopen("apiob.in","r",stdin);
	//~ freopen("apiob.out","w",stdout);
	scanf("%d",&n);
	rep(i,1,n)
		scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x*cos(alpha)+y*sin(alpha),y*cos(alpha)-x*sin(alpha),r,i};
	rt=build(1,n,0); sort(a+1,a+n+1,cmpr);
	rep(i,1,n) if (!ans[a[i].id]) ans[a[i].id]=a[i].id,cur=a[i],que(rt);
	rep(i,1,n) printf("%d ",ans[i]); puts("");
	return 0;
}*/

Compilation message

circle_selection.cpp: In function 'int main()':
circle_selection.cpp:4:20: warning: this 'for' clause does not guard... [-Wmisleading-indentation]
 #define rep(i,l,r) for (int i=(l); i<=(r); i++)
                    ^
circle_selection.cpp:70:2: note: in expansion of macro 'rep'
  rep(i,1,n) printf("%d ",ans[i]); puts("");
  ^~~
circle_selection.cpp:70:35: note: ...this statement, but the latter is misleadingly indented as if it were guarded by the 'for'
  rep(i,1,n) printf("%d ",ans[i]); puts("");
                                   ^~~~
circle_selection.cpp:65:7: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
  scanf("%d",&n);
  ~~~~~^~~~~~~~~
circle_selection.cpp:67:30: warning: ignoring return value of 'int scanf(const char*, ...)', declared with attribute warn_unused_result [-Wunused-result]
   scanf("%lf%lf%lf",&x,&y,&r),a[i]=(P){x,y,r,i};
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 512 KB Output is correct
3 Correct 2 ms 536 KB Output is correct
4 Correct 2 ms 536 KB Output is correct
5 Correct 2 ms 536 KB Output is correct
6 Correct 2 ms 536 KB Output is correct
7 Correct 2 ms 544 KB Output is correct
8 Correct 2 ms 548 KB Output is correct
9 Correct 2 ms 680 KB Output is correct
10 Correct 2 ms 680 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 2 ms 748 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
14 Correct 2 ms 748 KB Output is correct
15 Correct 2 ms 748 KB Output is correct
16 Correct 4 ms 748 KB Output is correct
17 Correct 3 ms 748 KB Output is correct
18 Correct 3 ms 888 KB Output is correct
19 Correct 7 ms 1432 KB Output is correct
20 Correct 8 ms 1584 KB Output is correct
21 Correct 10 ms 1752 KB Output is correct
22 Correct 9 ms 1860 KB Output is correct
23 Correct 13 ms 1928 KB Output is correct
24 Correct 9 ms 1976 KB Output is correct
25 Correct 9 ms 1976 KB Output is correct
26 Correct 14 ms 1976 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 365 ms 35260 KB Output is correct
2 Correct 343 ms 35400 KB Output is correct
3 Correct 330 ms 35400 KB Output is correct
4 Correct 341 ms 35420 KB Output is correct
5 Correct 344 ms 35420 KB Output is correct
6 Correct 419 ms 35420 KB Output is correct
7 Correct 372 ms 35560 KB Output is correct
8 Correct 376 ms 35560 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 35560 KB Output is correct
2 Correct 197 ms 35560 KB Output is correct
3 Correct 761 ms 35600 KB Output is correct
4 Correct 756 ms 35600 KB Output is correct
5 Correct 655 ms 35600 KB Output is correct
6 Correct 277 ms 35600 KB Output is correct
7 Correct 135 ms 35600 KB Output is correct
8 Correct 26 ms 35600 KB Output is correct
9 Correct 741 ms 35600 KB Output is correct
10 Correct 596 ms 35600 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 738 ms 35600 KB Output is correct
2 Correct 736 ms 35600 KB Output is correct
3 Correct 491 ms 35600 KB Output is correct
4 Correct 701 ms 36288 KB Output is correct
5 Correct 776 ms 36304 KB Output is correct
6 Correct 463 ms 36304 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 512 KB Output is correct
3 Correct 2 ms 536 KB Output is correct
4 Correct 2 ms 536 KB Output is correct
5 Correct 2 ms 536 KB Output is correct
6 Correct 2 ms 536 KB Output is correct
7 Correct 2 ms 544 KB Output is correct
8 Correct 2 ms 548 KB Output is correct
9 Correct 2 ms 680 KB Output is correct
10 Correct 2 ms 680 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 2 ms 748 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
14 Correct 2 ms 748 KB Output is correct
15 Correct 2 ms 748 KB Output is correct
16 Correct 4 ms 748 KB Output is correct
17 Correct 3 ms 748 KB Output is correct
18 Correct 3 ms 888 KB Output is correct
19 Correct 7 ms 1432 KB Output is correct
20 Correct 8 ms 1584 KB Output is correct
21 Correct 10 ms 1752 KB Output is correct
22 Correct 9 ms 1860 KB Output is correct
23 Correct 13 ms 1928 KB Output is correct
24 Correct 9 ms 1976 KB Output is correct
25 Correct 9 ms 1976 KB Output is correct
26 Correct 14 ms 1976 KB Output is correct
27 Correct 15 ms 36304 KB Output is correct
28 Correct 14 ms 36304 KB Output is correct
29 Correct 14 ms 36304 KB Output is correct
30 Correct 17 ms 36304 KB Output is correct
31 Correct 17 ms 36304 KB Output is correct
32 Correct 18 ms 36304 KB Output is correct
33 Correct 130 ms 36304 KB Output is correct
34 Correct 130 ms 36304 KB Output is correct
35 Correct 181 ms 36304 KB Output is correct
36 Correct 199 ms 36304 KB Output is correct
37 Correct 196 ms 36304 KB Output is correct
38 Correct 194 ms 36304 KB Output is correct
39 Correct 199 ms 36304 KB Output is correct
40 Correct 196 ms 36304 KB Output is correct
41 Correct 196 ms 36304 KB Output is correct
42 Correct 152 ms 36304 KB Output is correct
43 Correct 169 ms 36304 KB Output is correct
44 Correct 204 ms 36304 KB Output is correct
45 Correct 176 ms 36304 KB Output is correct
46 Correct 288 ms 36304 KB Output is correct
47 Correct 184 ms 36304 KB Output is correct
48 Correct 178 ms 36304 KB Output is correct
49 Correct 184 ms 36304 KB Output is correct
50 Correct 171 ms 36304 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 2 ms 376 KB Output is correct
2 Correct 2 ms 512 KB Output is correct
3 Correct 2 ms 536 KB Output is correct
4 Correct 2 ms 536 KB Output is correct
5 Correct 2 ms 536 KB Output is correct
6 Correct 2 ms 536 KB Output is correct
7 Correct 2 ms 544 KB Output is correct
8 Correct 2 ms 548 KB Output is correct
9 Correct 2 ms 680 KB Output is correct
10 Correct 2 ms 680 KB Output is correct
11 Correct 2 ms 748 KB Output is correct
12 Correct 2 ms 748 KB Output is correct
13 Correct 2 ms 748 KB Output is correct
14 Correct 2 ms 748 KB Output is correct
15 Correct 2 ms 748 KB Output is correct
16 Correct 4 ms 748 KB Output is correct
17 Correct 3 ms 748 KB Output is correct
18 Correct 3 ms 888 KB Output is correct
19 Correct 7 ms 1432 KB Output is correct
20 Correct 8 ms 1584 KB Output is correct
21 Correct 10 ms 1752 KB Output is correct
22 Correct 9 ms 1860 KB Output is correct
23 Correct 13 ms 1928 KB Output is correct
24 Correct 9 ms 1976 KB Output is correct
25 Correct 9 ms 1976 KB Output is correct
26 Correct 14 ms 1976 KB Output is correct
27 Correct 365 ms 35260 KB Output is correct
28 Correct 343 ms 35400 KB Output is correct
29 Correct 330 ms 35400 KB Output is correct
30 Correct 341 ms 35420 KB Output is correct
31 Correct 344 ms 35420 KB Output is correct
32 Correct 419 ms 35420 KB Output is correct
33 Correct 372 ms 35560 KB Output is correct
34 Correct 376 ms 35560 KB Output is correct
35 Correct 2 ms 35560 KB Output is correct
36 Correct 197 ms 35560 KB Output is correct
37 Correct 761 ms 35600 KB Output is correct
38 Correct 756 ms 35600 KB Output is correct
39 Correct 655 ms 35600 KB Output is correct
40 Correct 277 ms 35600 KB Output is correct
41 Correct 135 ms 35600 KB Output is correct
42 Correct 26 ms 35600 KB Output is correct
43 Correct 741 ms 35600 KB Output is correct
44 Correct 596 ms 35600 KB Output is correct
45 Correct 738 ms 35600 KB Output is correct
46 Correct 736 ms 35600 KB Output is correct
47 Correct 491 ms 35600 KB Output is correct
48 Correct 701 ms 36288 KB Output is correct
49 Correct 776 ms 36304 KB Output is correct
50 Correct 463 ms 36304 KB Output is correct
51 Correct 15 ms 36304 KB Output is correct
52 Correct 14 ms 36304 KB Output is correct
53 Correct 14 ms 36304 KB Output is correct
54 Correct 17 ms 36304 KB Output is correct
55 Correct 17 ms 36304 KB Output is correct
56 Correct 18 ms 36304 KB Output is correct
57 Correct 130 ms 36304 KB Output is correct
58 Correct 130 ms 36304 KB Output is correct
59 Correct 181 ms 36304 KB Output is correct
60 Correct 199 ms 36304 KB Output is correct
61 Correct 196 ms 36304 KB Output is correct
62 Correct 194 ms 36304 KB Output is correct
63 Correct 199 ms 36304 KB Output is correct
64 Correct 196 ms 36304 KB Output is correct
65 Correct 196 ms 36304 KB Output is correct
66 Correct 152 ms 36304 KB Output is correct
67 Correct 169 ms 36304 KB Output is correct
68 Correct 204 ms 36304 KB Output is correct
69 Correct 176 ms 36304 KB Output is correct
70 Correct 288 ms 36304 KB Output is correct
71 Correct 184 ms 36304 KB Output is correct
72 Correct 178 ms 36304 KB Output is correct
73 Correct 184 ms 36304 KB Output is correct
74 Correct 171 ms 36304 KB Output is correct
75 Correct 781 ms 36304 KB Output is correct
76 Correct 402 ms 36344 KB Output is correct
77 Correct 392 ms 36412 KB Output is correct
78 Correct 409 ms 36412 KB Output is correct
79 Correct 616 ms 36420 KB Output is correct
80 Correct 421 ms 36420 KB Output is correct
81 Correct 791 ms 36420 KB Output is correct
82 Correct 796 ms 36420 KB Output is correct
83 Correct 859 ms 36420 KB Output is correct
84 Correct 733 ms 36420 KB Output is correct
85 Correct 698 ms 36420 KB Output is correct
86 Correct 750 ms 36420 KB Output is correct
87 Correct 755 ms 36472 KB Output is correct
88 Correct 738 ms 36472 KB Output is correct
89 Correct 765 ms 36472 KB Output is correct
90 Correct 692 ms 36472 KB Output is correct
91 Correct 723 ms 36472 KB Output is correct
92 Correct 774 ms 36472 KB Output is correct
93 Correct 666 ms 36472 KB Output is correct
94 Correct 660 ms 36472 KB Output is correct
95 Correct 700 ms 36488 KB Output is correct
96 Correct 615 ms 36488 KB Output is correct
97 Correct 680 ms 36524 KB Output is correct
98 Correct 517 ms 36560 KB Output is correct
99 Correct 706 ms 36620 KB Output is correct
100 Correct 671 ms 36620 KB Output is correct
101 Correct 579 ms 36620 KB Output is correct
102 Correct 621 ms 37304 KB Output is correct
103 Correct 640 ms 37304 KB Output is correct
104 Correct 651 ms 37304 KB Output is correct
105 Correct 539 ms 37304 KB Output is correct
106 Correct 597 ms 37304 KB Output is correct
107 Correct 596 ms 37428 KB Output is correct
108 Correct 638 ms 37428 KB Output is correct
109 Correct 636 ms 37428 KB Output is correct
110 Correct 599 ms 37428 KB Output is correct
111 Correct 604 ms 37428 KB Output is correct
112 Correct 621 ms 37428 KB Output is correct
113 Correct 609 ms 37428 KB Output is correct
114 Correct 597 ms 37428 KB Output is correct
115 Correct 583 ms 37428 KB Output is correct
116 Correct 580 ms 37428 KB Output is correct