# |
Submission time |
Handle |
Problem |
Language |
Result |
Execution time |
Memory |
778380 |
2023-07-10T09:00:37 Z |
CSQ31 |
Simurgh (IOI17_simurgh) |
C++17 |
|
209 ms |
11868 KB |
#include "simurgh.h"
#include<bits/stdc++.h>
using namespace std;
#define pb push_back
#define fi first
#define se second
#define sz(a) (int)(a.size())
#define all(a) a.begin(),a.end()
typedef long long int ll;
typedef pair<int,int> pii;
const int MAXN = 2e5;
int par[MAXN],szz[MAXN],good[MAXN],tree[MAXN];
vector<pii>adj[MAXN],ed;
int find(int x){
if(x==par[x])return x;
return par[x] = find(par[x]);
}
bool unite(int a,int b){
a = find(a);
b = find(b);
if(a==b)return 0;
if(szz[a] > szz[b])swap(a,b);
par[a] = b;
szz[b]+=szz[a];
return 1;
}
void init(int n){
for(int i=0;i<n;i++){
par[i] = i;
szz[i] = 1;
}
}
set<int>edges;
vector<int>edge;
int Q = 0;
int ask(){
Q++;
assert(Q<=9000);
vector<int>r;
if(edges.empty())for(int x:edge)r.pb(x);
else for(int x:edges)r.pb(x);
//assert(sz(r)==nn-1);
return count_common_roads(r);
}
pii p[MAXN];
int dep[MAXN],vis[MAXN],glob;
void dfs(int v,int u){
vis[v] = 1;
for(pii z:adj[v]){
int x = z.fi;
int id = z.se;
if(vis[x] || x==u)continue;
tree[id] = 1;
edges.insert(id);
dep[x] = dep[v]+1;
p[x] = {v,id};
dfs(x,v);
}
}
void dfs2(int v,int u){
for(pii z:adj[v]){
int x = z.fi;
int id = z.se;
if(tree[id]){
if(x!=u)dfs2(x,v);
continue;
}
if(dep[x] > dep[v])continue; //go downwards
vector<int>path,res;
int cur = v;
while(cur != x){
path.pb(p[cur].se);
cur = p[cur].fi;
}
//for(int e:path)cout<<e<<" ";
//cout<<'\n';
int have = 0;
for(int e:path)have += (good[e] == -1);
if(!have)continue; //if all tree edge part of this cycle is known,skip
edges.insert(id);
if(have == sz(path)){ //everything is unknown
//cout<<"case 1"<<'\n';
for(int e:path){
edges.erase(e);
res.pb(ask());
edges.insert(e);
}
path.pb(id);
res.pb(glob);
int s = sz(path);
for(int i=0;i<s;i++){
int j = (i+s-1) % s;
if(res[i] == res[j])continue;
good[path[i]] = 1;
good[path[j]] = 0;
if(res[i] > res[j])swap(good[path[i]],good[path[j]]);
}
for(int i=0;i<s;i++){
int j = (i+s-1) % s;
if(good[path[j]] >= 0 && res[i] == res[j])good[path[i]] = good[path[j]];
}
for(int i=s-1;i>=0;i--){
int j = (i+1) % s;
if(good[path[j]] >= 0 && res[i] == res[j])good[path[i]] = good[path[j]];
}
for(int x:path){
if(good[x] == -1)good[x] = 0;
}
}else{
//cout<<"case 2"<<'\n';
if(good[id] == -1){
for(int e:path){
if(good[e] == -1)continue;
edges.erase(e);
int res2 = ask();
edges.insert(e);
if(res2 == glob)good[id] = good[e];
else if(res2 > glob)good[id] = 1;
else good[id] = 0;
break;
}
}
//cout<<good[id]<<'\n';
for(int e:path){
if(good[e] != -1)continue;
edges.erase(e);
int res2 = ask();
edges.insert(e);
if(res2 == glob)good[e] = good[id];
else if(res2 > glob)good[e] = 0;
else good[e] = 1;
}
}
edges.erase(id);
}
}
vector<int>e,solved;
int make(){
int cnt = 0;
for(int x:solved){
if(unite(ed[x].fi,ed[x].se)){
edge.pb(x);
cnt+=good[x];
}
}
return cnt;
}
void solve(vector<int>e,int n,int num){
if(sz(e)==1){
good[e[0]] = 1;
return;
}
int m = sz(e);
vector<int>l,r;
for(int i=0;i<m/2;i++)l.pb(e[i]);
for(int i=m/2;i<m;i++)r.pb(e[i]);
init(n);
edge.clear();
for(int x:l){
edge.pb(x);
unite(ed[x].fi,ed[x].se);
}
int tot = make();
int res = ask();
int x = res-tot;
if(x)solve(l,n,x);
if(num-x)solve(r,n,num-x);
}
mt19937 seed(chrono::high_resolution_clock::now().time_since_epoch().count());
vector<int> find_roads(int N,vector<int> u,vector<int> v) {
int n = N;
int m = sz(u);
for(int i=0;i<m;i++)ed.pb({v[i],u[i]});
for(int i=0;i<m;i++){
good[i] = -1;
adj[u[i]].pb({v[i],i});
adj[v[i]].pb({u[i],i});
}
dfs(0,-1);
glob = ask();
dfs2(0,-1);
assert(Q<=1000);
for(int x:edges){
if(good[x]==-1)good[x] = 1; //this is a bridge
}
for(int x:edges)solved.pb(x);
edges.clear();
for(int i=0;i<n;i++){
e.clear();
for(pii x:adj[i]){
if(x.fi > i)e.pb(x.se);
}
if(e.empty())continue;
init(n);
edge.clear();
for(int x:e){
unite(ed[x].fi,ed[x].se);
edge.pb(x);
}
int tot = make();
int res = ask();
if(res-tot)solve(e,n,res-tot);
}
vector<int>ans;
for(int i=0;i<m;i++){
if(good[i] == 1)ans.pb(i);
}
return ans;
}
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4948 KB |
correct |
2 |
Correct |
3 ms |
4948 KB |
correct |
3 |
Correct |
2 ms |
5012 KB |
correct |
4 |
Correct |
3 ms |
5016 KB |
correct |
5 |
Correct |
2 ms |
4948 KB |
correct |
6 |
Correct |
3 ms |
4948 KB |
correct |
7 |
Correct |
3 ms |
5012 KB |
correct |
8 |
Correct |
3 ms |
5016 KB |
correct |
9 |
Correct |
2 ms |
4948 KB |
correct |
10 |
Correct |
2 ms |
4948 KB |
correct |
11 |
Correct |
2 ms |
4948 KB |
correct |
12 |
Correct |
3 ms |
4948 KB |
correct |
13 |
Correct |
2 ms |
4948 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4948 KB |
correct |
2 |
Correct |
3 ms |
4948 KB |
correct |
3 |
Correct |
2 ms |
5012 KB |
correct |
4 |
Correct |
3 ms |
5016 KB |
correct |
5 |
Correct |
2 ms |
4948 KB |
correct |
6 |
Correct |
3 ms |
4948 KB |
correct |
7 |
Correct |
3 ms |
5012 KB |
correct |
8 |
Correct |
3 ms |
5016 KB |
correct |
9 |
Correct |
2 ms |
4948 KB |
correct |
10 |
Correct |
2 ms |
4948 KB |
correct |
11 |
Correct |
2 ms |
4948 KB |
correct |
12 |
Correct |
3 ms |
4948 KB |
correct |
13 |
Correct |
2 ms |
4948 KB |
correct |
14 |
Correct |
4 ms |
5024 KB |
correct |
15 |
Correct |
4 ms |
5020 KB |
correct |
16 |
Correct |
4 ms |
5020 KB |
correct |
17 |
Correct |
3 ms |
5076 KB |
correct |
18 |
Correct |
3 ms |
5076 KB |
correct |
19 |
Correct |
4 ms |
5076 KB |
correct |
20 |
Correct |
3 ms |
5076 KB |
correct |
21 |
Correct |
3 ms |
5020 KB |
correct |
22 |
Correct |
3 ms |
5076 KB |
correct |
23 |
Correct |
3 ms |
5076 KB |
correct |
24 |
Correct |
3 ms |
5092 KB |
correct |
25 |
Correct |
3 ms |
5012 KB |
correct |
26 |
Correct |
3 ms |
5012 KB |
correct |
27 |
Correct |
3 ms |
5076 KB |
correct |
28 |
Correct |
3 ms |
5012 KB |
correct |
29 |
Correct |
3 ms |
5012 KB |
correct |
30 |
Correct |
3 ms |
5076 KB |
correct |
31 |
Correct |
3 ms |
5076 KB |
correct |
32 |
Correct |
3 ms |
5076 KB |
correct |
33 |
Correct |
3 ms |
5076 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4948 KB |
correct |
2 |
Correct |
3 ms |
4948 KB |
correct |
3 |
Correct |
2 ms |
5012 KB |
correct |
4 |
Correct |
3 ms |
5016 KB |
correct |
5 |
Correct |
2 ms |
4948 KB |
correct |
6 |
Correct |
3 ms |
4948 KB |
correct |
7 |
Correct |
3 ms |
5012 KB |
correct |
8 |
Correct |
3 ms |
5016 KB |
correct |
9 |
Correct |
2 ms |
4948 KB |
correct |
10 |
Correct |
2 ms |
4948 KB |
correct |
11 |
Correct |
2 ms |
4948 KB |
correct |
12 |
Correct |
3 ms |
4948 KB |
correct |
13 |
Correct |
2 ms |
4948 KB |
correct |
14 |
Correct |
4 ms |
5024 KB |
correct |
15 |
Correct |
4 ms |
5020 KB |
correct |
16 |
Correct |
4 ms |
5020 KB |
correct |
17 |
Correct |
3 ms |
5076 KB |
correct |
18 |
Correct |
3 ms |
5076 KB |
correct |
19 |
Correct |
4 ms |
5076 KB |
correct |
20 |
Correct |
3 ms |
5076 KB |
correct |
21 |
Correct |
3 ms |
5020 KB |
correct |
22 |
Correct |
3 ms |
5076 KB |
correct |
23 |
Correct |
3 ms |
5076 KB |
correct |
24 |
Correct |
3 ms |
5092 KB |
correct |
25 |
Correct |
3 ms |
5012 KB |
correct |
26 |
Correct |
3 ms |
5012 KB |
correct |
27 |
Correct |
3 ms |
5076 KB |
correct |
28 |
Correct |
3 ms |
5012 KB |
correct |
29 |
Correct |
3 ms |
5012 KB |
correct |
30 |
Correct |
3 ms |
5076 KB |
correct |
31 |
Correct |
3 ms |
5076 KB |
correct |
32 |
Correct |
3 ms |
5076 KB |
correct |
33 |
Correct |
3 ms |
5076 KB |
correct |
34 |
Correct |
33 ms |
6696 KB |
correct |
35 |
Correct |
33 ms |
6572 KB |
correct |
36 |
Correct |
28 ms |
6352 KB |
correct |
37 |
Correct |
8 ms |
5180 KB |
correct |
38 |
Correct |
37 ms |
6664 KB |
correct |
39 |
Correct |
29 ms |
6456 KB |
correct |
40 |
Correct |
23 ms |
6352 KB |
correct |
41 |
Correct |
32 ms |
6608 KB |
correct |
42 |
Correct |
35 ms |
6620 KB |
correct |
43 |
Correct |
18 ms |
6004 KB |
correct |
44 |
Correct |
15 ms |
5716 KB |
correct |
45 |
Correct |
17 ms |
5864 KB |
correct |
46 |
Correct |
20 ms |
5740 KB |
correct |
47 |
Correct |
11 ms |
5332 KB |
correct |
48 |
Correct |
5 ms |
5020 KB |
correct |
49 |
Correct |
7 ms |
5148 KB |
correct |
50 |
Correct |
12 ms |
5332 KB |
correct |
51 |
Correct |
20 ms |
5792 KB |
correct |
52 |
Correct |
16 ms |
5788 KB |
correct |
53 |
Correct |
15 ms |
5716 KB |
correct |
54 |
Correct |
18 ms |
6100 KB |
correct |
55 |
Correct |
20 ms |
5912 KB |
correct |
56 |
Correct |
20 ms |
5800 KB |
correct |
57 |
Correct |
28 ms |
5908 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4948 KB |
correct |
2 |
Correct |
3 ms |
4948 KB |
correct |
3 |
Correct |
102 ms |
9796 KB |
correct |
4 |
Correct |
171 ms |
11868 KB |
correct |
5 |
Correct |
189 ms |
11856 KB |
correct |
6 |
Correct |
175 ms |
11856 KB |
correct |
7 |
Correct |
166 ms |
11868 KB |
correct |
8 |
Correct |
158 ms |
11848 KB |
correct |
9 |
Correct |
190 ms |
11828 KB |
correct |
10 |
Correct |
209 ms |
11856 KB |
correct |
11 |
Correct |
176 ms |
11728 KB |
correct |
12 |
Correct |
188 ms |
11848 KB |
correct |
13 |
Correct |
3 ms |
4948 KB |
correct |
14 |
Correct |
173 ms |
11828 KB |
correct |
15 |
Correct |
179 ms |
11860 KB |
correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
2 ms |
4948 KB |
correct |
2 |
Correct |
3 ms |
4948 KB |
correct |
3 |
Correct |
2 ms |
5012 KB |
correct |
4 |
Correct |
3 ms |
5016 KB |
correct |
5 |
Correct |
2 ms |
4948 KB |
correct |
6 |
Correct |
3 ms |
4948 KB |
correct |
7 |
Correct |
3 ms |
5012 KB |
correct |
8 |
Correct |
3 ms |
5016 KB |
correct |
9 |
Correct |
2 ms |
4948 KB |
correct |
10 |
Correct |
2 ms |
4948 KB |
correct |
11 |
Correct |
2 ms |
4948 KB |
correct |
12 |
Correct |
3 ms |
4948 KB |
correct |
13 |
Correct |
2 ms |
4948 KB |
correct |
14 |
Correct |
4 ms |
5024 KB |
correct |
15 |
Correct |
4 ms |
5020 KB |
correct |
16 |
Correct |
4 ms |
5020 KB |
correct |
17 |
Correct |
3 ms |
5076 KB |
correct |
18 |
Correct |
3 ms |
5076 KB |
correct |
19 |
Correct |
4 ms |
5076 KB |
correct |
20 |
Correct |
3 ms |
5076 KB |
correct |
21 |
Correct |
3 ms |
5020 KB |
correct |
22 |
Correct |
3 ms |
5076 KB |
correct |
23 |
Correct |
3 ms |
5076 KB |
correct |
24 |
Correct |
3 ms |
5092 KB |
correct |
25 |
Correct |
3 ms |
5012 KB |
correct |
26 |
Correct |
3 ms |
5012 KB |
correct |
27 |
Correct |
3 ms |
5076 KB |
correct |
28 |
Correct |
3 ms |
5012 KB |
correct |
29 |
Correct |
3 ms |
5012 KB |
correct |
30 |
Correct |
3 ms |
5076 KB |
correct |
31 |
Correct |
3 ms |
5076 KB |
correct |
32 |
Correct |
3 ms |
5076 KB |
correct |
33 |
Correct |
3 ms |
5076 KB |
correct |
34 |
Correct |
33 ms |
6696 KB |
correct |
35 |
Correct |
33 ms |
6572 KB |
correct |
36 |
Correct |
28 ms |
6352 KB |
correct |
37 |
Correct |
8 ms |
5180 KB |
correct |
38 |
Correct |
37 ms |
6664 KB |
correct |
39 |
Correct |
29 ms |
6456 KB |
correct |
40 |
Correct |
23 ms |
6352 KB |
correct |
41 |
Correct |
32 ms |
6608 KB |
correct |
42 |
Correct |
35 ms |
6620 KB |
correct |
43 |
Correct |
18 ms |
6004 KB |
correct |
44 |
Correct |
15 ms |
5716 KB |
correct |
45 |
Correct |
17 ms |
5864 KB |
correct |
46 |
Correct |
20 ms |
5740 KB |
correct |
47 |
Correct |
11 ms |
5332 KB |
correct |
48 |
Correct |
5 ms |
5020 KB |
correct |
49 |
Correct |
7 ms |
5148 KB |
correct |
50 |
Correct |
12 ms |
5332 KB |
correct |
51 |
Correct |
20 ms |
5792 KB |
correct |
52 |
Correct |
16 ms |
5788 KB |
correct |
53 |
Correct |
15 ms |
5716 KB |
correct |
54 |
Correct |
18 ms |
6100 KB |
correct |
55 |
Correct |
20 ms |
5912 KB |
correct |
56 |
Correct |
20 ms |
5800 KB |
correct |
57 |
Correct |
28 ms |
5908 KB |
correct |
58 |
Correct |
2 ms |
4948 KB |
correct |
59 |
Correct |
3 ms |
4948 KB |
correct |
60 |
Correct |
102 ms |
9796 KB |
correct |
61 |
Correct |
171 ms |
11868 KB |
correct |
62 |
Correct |
189 ms |
11856 KB |
correct |
63 |
Correct |
175 ms |
11856 KB |
correct |
64 |
Correct |
166 ms |
11868 KB |
correct |
65 |
Correct |
158 ms |
11848 KB |
correct |
66 |
Correct |
190 ms |
11828 KB |
correct |
67 |
Correct |
209 ms |
11856 KB |
correct |
68 |
Correct |
176 ms |
11728 KB |
correct |
69 |
Correct |
188 ms |
11848 KB |
correct |
70 |
Correct |
3 ms |
4948 KB |
correct |
71 |
Correct |
173 ms |
11828 KB |
correct |
72 |
Correct |
179 ms |
11860 KB |
correct |
73 |
Correct |
3 ms |
4948 KB |
correct |
74 |
Correct |
185 ms |
11840 KB |
correct |
75 |
Correct |
179 ms |
11664 KB |
correct |
76 |
Correct |
82 ms |
7676 KB |
correct |
77 |
Correct |
188 ms |
11824 KB |
correct |
78 |
Correct |
177 ms |
11820 KB |
correct |
79 |
Correct |
198 ms |
11844 KB |
correct |
80 |
Correct |
174 ms |
11696 KB |
correct |
81 |
Correct |
135 ms |
11060 KB |
correct |
82 |
Correct |
170 ms |
11692 KB |
correct |
83 |
Correct |
112 ms |
8832 KB |
correct |
84 |
Correct |
91 ms |
9544 KB |
correct |
85 |
Correct |
92 ms |
9340 KB |
correct |
86 |
Correct |
61 ms |
7800 KB |
correct |
87 |
Correct |
49 ms |
7248 KB |
correct |
88 |
Correct |
44 ms |
6612 KB |
correct |
89 |
Correct |
41 ms |
6560 KB |
correct |
90 |
Correct |
37 ms |
6352 KB |
correct |
91 |
Correct |
21 ms |
5288 KB |
correct |
92 |
Correct |
12 ms |
5148 KB |
correct |
93 |
Correct |
91 ms |
9344 KB |
correct |
94 |
Correct |
60 ms |
7800 KB |
correct |
95 |
Correct |
62 ms |
7756 KB |
correct |
96 |
Correct |
40 ms |
6432 KB |
correct |
97 |
Correct |
43 ms |
6568 KB |
correct |
98 |
Correct |
51 ms |
7204 KB |
correct |
99 |
Correct |
46 ms |
6608 KB |
correct |
100 |
Correct |
29 ms |
5636 KB |
correct |
101 |
Correct |
13 ms |
5228 KB |
correct |
102 |
Correct |
95 ms |
8556 KB |
correct |
103 |
Correct |
115 ms |
8532 KB |
correct |
104 |
Correct |
95 ms |
8524 KB |
correct |
105 |
Correct |
94 ms |
8472 KB |
correct |