Submission #777643

# Submission time Handle Problem Language Result Execution time Memory
777643 2023-07-09T11:54:38 Z Sam_a17 New Home (APIO18_new_home) C++17
57 / 100
5000 ms 545728 KB
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
//#include "temp.cpp"
#include <cstdio>
using namespace std;
 
#ifndef ONLINE_JUDGE
#define dbg(x) cerr << #x <<" "; print(x); cerr << endl;
#else
#define dbg(x)
#endif
 
#define sz(x) (int)x.size()
#define len(x) (int)x.length()
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define clr(x) (x).clear()
#define uniq(x) x.resize(unique(all(x)) - x.begin());
#define blt __builtin_popcount
 
#define pb push_back
#define popf pop_front
#define popb pop_back
#define ld long double
#define ll long long
 
void print(long long t) {cerr << t;}
void print(int t) {cerr << t;}
void print(string t) {cerr << t;}
void print(char t) {cerr << t;}
void print(double t) {cerr << t;}
void print(long double t) {cerr << t;}
void print(unsigned long long t) {cerr << t;}
 
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#define nl '\n'
 
// Indexed Set  
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
template <class T, class V> void print(pair <T, V> p);
template <class T> void print(vector <T> v);
template <class T> void print(set <T> v);
template <class T, class V> void print(map <T, V> v);
template <class T> void print(multiset <T> v);
template <class T, class V> void print(T v[],V n) {cerr << "["; for(int i = 0; i < n; i++) {print(v[i]); cerr << " "; } cerr << "]";}
template <class T, class V> void print(pair <T, V> p) {cerr << "{"; print(p.first); cerr << ","; print(p.second); cerr << "}";}
template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
// template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(set <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(multiset <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(Tree <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T, class V> void print(map <T, V> v) {cerr << "[ "; for (auto i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(deque <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
 
 
// for random generations
mt19937 myrand(chrono::steady_clock::now().time_since_epoch().count());
// mt19937 myrand(131);
 
// for grid problems
int dx[8] = {-1,0,1,0,1,-1,1,-1};
int dy[8] = {0,1,0,-1,1,1,-1,-1};
 
// lowest / (1 << 17) >= 1e5 / (1 << 18) >= 2e5 / (1 << 21) >= 1e6
void fastIO() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr); cout.tie(nullptr);
}
// file in/out
void setIO(string str = "") {
  fastIO();
 
  // if(str == "input") {
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
  // } else if(str != "") {
    // freopen((str + ".in").c_str(), "r", stdin);
    // freopen((str + ".out").c_str(), "w", stdout);
  // }
}
 
const int N = 3e6 + 10, maxM = 3e5 + 10, inf = 1e8, infi = 2e9 + 10;
vector<pair<pair<int, int>, int>> to_add[N];
int n, k, q;
 
struct node {
  int x, t, a, b;
};
 
vector<node> cand;

struct segTreeMax {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size, sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, 0);
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *prev(mt[x].end());
      } else {
        mTree[x + sub] = -1;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = max(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return -1;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return max(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

struct segTreeMin {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size;
  int sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, INT32_MAX);
  }

  int ind(int xx) {
    if(xx >= sub) {
      return xx - sub;
    } else {
      return xx;
    }
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *mt[x].begin();
      } else {
        mTree[x + sub] = INT32_MAX;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = min(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return INT32_MAX;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return min(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

segTreeMax rs;
segTreeMin ls;

vector<int> compress_times, compress_locations;
map<int, int> mx_col[maxM];
int pat[maxM];

int get(int val) {
  return lower_bound(all(compress_locations), val) - compress_locations.begin();
}

void add_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;
  
  if(mid <= r) {
    rs.upd(mid, r);
  }
  if(l < mid) {
    ls.upd(midone, l);
  }
}

void del_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;

  if(mid <= r) rs.upd(mid, -r);
  if(l < mid) ls.upd(midone, -l);
}

void solve_() {
  cin >> n >> k >> q;
 
  for(int i = 1; i <= n; i++) {
    int x, t, a, b; 
    cin >> x >> t >> a >> b;
    
    compress_times.push_back(a);
    compress_times.push_back(b + 1);

    compress_locations.push_back(x);

    cand.push_back({x, t, a, b});
  }

  vector<pair<int, int>> queries;
  for(int i = 1; i <= q; i++) {
    int l, y; cin >> l >> y;
    compress_locations.push_back(l);
    compress_times.push_back(y);
    queries.emplace_back(l, y);
  }

  compress_locations.push_back(-infi);
  compress_locations.push_back(infi);
  
  sort(all(compress_times));
  uniq(compress_times);


  for(auto &i: cand) {
    i.a = lower_bound(all(compress_times), i.a) - compress_times.begin();
    i.b = lower_bound(all(compress_times), i.b + 1) - compress_times.begin();

    to_add[i.a].push_back({{i.x, i.t}, 1});
    to_add[i.b].push_back({{i.x, i.t}, 2});
  } 

  for(int i = 1; i <= k; i++) {
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;
        
        compress_locations.push_back(mid1);
        compress_locations.push_back(mid1 - 1);
        
        compress_locations.push_back(mid2);
        compress_locations.push_back(mid2 - 1);
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          auto it_prev = prev(it), it_next = next(it);

          int mid1 = (it_next->first + it_prev->first + 1) / 2;
          
          compress_locations.push_back(mid1);
          compress_locations.push_back(mid1 - 1);
  
          mx_col[j.second].erase(j.first);
        }
      } 
    }
  }

  int it = 1;
  for(auto &i: queries) {
    i.second = lower_bound(all(compress_times), i.second) - compress_times.begin();
    to_add[i.second].push_back({{i.first, it}, 0});
    it++;
  }

  sort(all(compress_locations));
  uniq(compress_locations);
  ls.init(sz(compress_locations) + 2);
  rs.init(sz(compress_locations) + 2);
  rs.gt(0);
  ls.gt(0);

  for(int i = 1; i <= k; i++) {
    mx_col[i].clear();
    
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  vector<bool> empty(k + 1, true);
  int emp = k;
  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        if(sz(mx_col[j.second]) == 3) {
          empty[j.second] = false;
          emp--;
        }

        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;

        add_interval(j.second, it_prev->first, j.first);
        add_interval(j.second, j.first, it_next->first);

        if(it_prev->first != -infi || it_next->first != infi) {
          del_interval(j.second, it_prev->first, it_next->first);
        }
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          if(sz(mx_col[j.second]) == 3) {
            empty[j.second] = true;
            emp++;
          }

          auto it_prev = prev(it), it_next = next(it);
          del_interval(j.second, it_prev->first, j.first);
          del_interval(j.second, j.first, it_next->first);

          if(it_prev->first != -infi || it_next->first != infi) {
            add_interval(j.second, it_prev->first, it_next->first);
          }

          mx_col[j.second].erase(j.first);
        }
      } else {
        auto j = cc.first;
        if(emp) {
          pat[j.second] = -1;
        } else {
          int cur = lower_bound(all(compress_locations), j.first) - compress_locations.begin();
          int li = ls.qry(cur, sz(compress_locations) + 1);
          int ri = rs.qry(0, cur + 1);

          if(li <= cur) {
            pat[j.second] = max(pat[j.second], j.first - compress_locations[li]);
          }

          if(ri >= cur) {
            pat[j.second] = max(pat[j.second], compress_locations[ri] - j.first);
          }
        }
      }
    }
  }

  for(int i = 1; i <= q; i++) {
    cout << pat[i] << '\n';
  }
 }
 
int main() {
  setIO();
 
  auto solve = [&](int test_case)-> void {
    for(int i = 1; i <= test_case; i++) {
      solve_();
    }
  };
 
  int test_cases = 1;
  // cin >> test_cases;
  solve(test_cases);
 
  return 0;
}

Compilation message

new_home.cpp: In function 'void solve_()':
new_home.cpp:429:13: warning: unused variable 'mid1' [-Wunused-variable]
  429 |         int mid1 = (it_next->first + j.first + 1) / 2;
      |             ^~~~
new_home.cpp:430:13: warning: unused variable 'mid2' [-Wunused-variable]
  430 |         int mid2 = (it_prev->first + j.first + 1) / 2;
      |             ^~~~
# Verdict Execution time Memory Grader output
1 Correct 149 ms 366644 KB Output is correct
2 Correct 146 ms 366668 KB Output is correct
3 Correct 153 ms 366548 KB Output is correct
4 Correct 144 ms 366564 KB Output is correct
5 Correct 147 ms 366844 KB Output is correct
6 Correct 147 ms 366832 KB Output is correct
7 Correct 148 ms 366872 KB Output is correct
8 Correct 146 ms 366920 KB Output is correct
9 Correct 148 ms 366952 KB Output is correct
10 Correct 147 ms 366836 KB Output is correct
11 Correct 145 ms 366844 KB Output is correct
12 Correct 149 ms 366820 KB Output is correct
13 Correct 147 ms 366988 KB Output is correct
14 Correct 149 ms 366848 KB Output is correct
15 Correct 145 ms 366796 KB Output is correct
16 Correct 147 ms 366792 KB Output is correct
17 Correct 148 ms 366944 KB Output is correct
18 Correct 145 ms 366884 KB Output is correct
19 Correct 149 ms 366816 KB Output is correct
20 Correct 149 ms 366864 KB Output is correct
21 Correct 169 ms 366912 KB Output is correct
22 Correct 153 ms 366948 KB Output is correct
23 Correct 146 ms 366868 KB Output is correct
24 Correct 148 ms 366824 KB Output is correct
25 Correct 147 ms 367076 KB Output is correct
26 Correct 147 ms 366772 KB Output is correct
27 Correct 145 ms 366656 KB Output is correct
28 Correct 148 ms 366796 KB Output is correct
29 Correct 148 ms 366828 KB Output is correct
30 Correct 145 ms 366736 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 366644 KB Output is correct
2 Correct 146 ms 366668 KB Output is correct
3 Correct 153 ms 366548 KB Output is correct
4 Correct 144 ms 366564 KB Output is correct
5 Correct 147 ms 366844 KB Output is correct
6 Correct 147 ms 366832 KB Output is correct
7 Correct 148 ms 366872 KB Output is correct
8 Correct 146 ms 366920 KB Output is correct
9 Correct 148 ms 366952 KB Output is correct
10 Correct 147 ms 366836 KB Output is correct
11 Correct 145 ms 366844 KB Output is correct
12 Correct 149 ms 366820 KB Output is correct
13 Correct 147 ms 366988 KB Output is correct
14 Correct 149 ms 366848 KB Output is correct
15 Correct 145 ms 366796 KB Output is correct
16 Correct 147 ms 366792 KB Output is correct
17 Correct 148 ms 366944 KB Output is correct
18 Correct 145 ms 366884 KB Output is correct
19 Correct 149 ms 366816 KB Output is correct
20 Correct 149 ms 366864 KB Output is correct
21 Correct 169 ms 366912 KB Output is correct
22 Correct 153 ms 366948 KB Output is correct
23 Correct 146 ms 366868 KB Output is correct
24 Correct 148 ms 366824 KB Output is correct
25 Correct 147 ms 367076 KB Output is correct
26 Correct 147 ms 366772 KB Output is correct
27 Correct 145 ms 366656 KB Output is correct
28 Correct 148 ms 366796 KB Output is correct
29 Correct 148 ms 366828 KB Output is correct
30 Correct 145 ms 366736 KB Output is correct
31 Correct 842 ms 395112 KB Output is correct
32 Correct 191 ms 373224 KB Output is correct
33 Correct 776 ms 389472 KB Output is correct
34 Correct 780 ms 389968 KB Output is correct
35 Correct 848 ms 395000 KB Output is correct
36 Correct 833 ms 394860 KB Output is correct
37 Correct 657 ms 387188 KB Output is correct
38 Correct 639 ms 387036 KB Output is correct
39 Correct 541 ms 386764 KB Output is correct
40 Correct 564 ms 386620 KB Output is correct
41 Correct 688 ms 391260 KB Output is correct
42 Correct 662 ms 391124 KB Output is correct
43 Correct 183 ms 374016 KB Output is correct
44 Correct 682 ms 391184 KB Output is correct
45 Correct 665 ms 391060 KB Output is correct
46 Correct 623 ms 390956 KB Output is correct
47 Correct 445 ms 390496 KB Output is correct
48 Correct 459 ms 390240 KB Output is correct
49 Correct 496 ms 390472 KB Output is correct
50 Correct 524 ms 390872 KB Output is correct
51 Correct 512 ms 390504 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4267 ms 534228 KB Output is correct
2 Correct 4686 ms 514120 KB Output is correct
3 Correct 2999 ms 542892 KB Output is correct
4 Correct 4159 ms 544908 KB Output is correct
5 Correct 4338 ms 517596 KB Output is correct
6 Correct 4908 ms 515968 KB Output is correct
7 Correct 2765 ms 542948 KB Output is correct
8 Correct 3256 ms 545728 KB Output is correct
9 Correct 3381 ms 530176 KB Output is correct
10 Correct 3755 ms 518756 KB Output is correct
11 Correct 2350 ms 516412 KB Output is correct
12 Correct 2499 ms 517720 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5083 ms 526360 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 149 ms 366644 KB Output is correct
2 Correct 146 ms 366668 KB Output is correct
3 Correct 153 ms 366548 KB Output is correct
4 Correct 144 ms 366564 KB Output is correct
5 Correct 147 ms 366844 KB Output is correct
6 Correct 147 ms 366832 KB Output is correct
7 Correct 148 ms 366872 KB Output is correct
8 Correct 146 ms 366920 KB Output is correct
9 Correct 148 ms 366952 KB Output is correct
10 Correct 147 ms 366836 KB Output is correct
11 Correct 145 ms 366844 KB Output is correct
12 Correct 149 ms 366820 KB Output is correct
13 Correct 147 ms 366988 KB Output is correct
14 Correct 149 ms 366848 KB Output is correct
15 Correct 145 ms 366796 KB Output is correct
16 Correct 147 ms 366792 KB Output is correct
17 Correct 148 ms 366944 KB Output is correct
18 Correct 145 ms 366884 KB Output is correct
19 Correct 149 ms 366816 KB Output is correct
20 Correct 149 ms 366864 KB Output is correct
21 Correct 169 ms 366912 KB Output is correct
22 Correct 153 ms 366948 KB Output is correct
23 Correct 146 ms 366868 KB Output is correct
24 Correct 148 ms 366824 KB Output is correct
25 Correct 147 ms 367076 KB Output is correct
26 Correct 147 ms 366772 KB Output is correct
27 Correct 145 ms 366656 KB Output is correct
28 Correct 148 ms 366796 KB Output is correct
29 Correct 148 ms 366828 KB Output is correct
30 Correct 145 ms 366736 KB Output is correct
31 Correct 842 ms 395112 KB Output is correct
32 Correct 191 ms 373224 KB Output is correct
33 Correct 776 ms 389472 KB Output is correct
34 Correct 780 ms 389968 KB Output is correct
35 Correct 848 ms 395000 KB Output is correct
36 Correct 833 ms 394860 KB Output is correct
37 Correct 657 ms 387188 KB Output is correct
38 Correct 639 ms 387036 KB Output is correct
39 Correct 541 ms 386764 KB Output is correct
40 Correct 564 ms 386620 KB Output is correct
41 Correct 688 ms 391260 KB Output is correct
42 Correct 662 ms 391124 KB Output is correct
43 Correct 183 ms 374016 KB Output is correct
44 Correct 682 ms 391184 KB Output is correct
45 Correct 665 ms 391060 KB Output is correct
46 Correct 623 ms 390956 KB Output is correct
47 Correct 445 ms 390496 KB Output is correct
48 Correct 459 ms 390240 KB Output is correct
49 Correct 496 ms 390472 KB Output is correct
50 Correct 524 ms 390872 KB Output is correct
51 Correct 512 ms 390504 KB Output is correct
52 Correct 648 ms 405620 KB Output is correct
53 Correct 620 ms 398632 KB Output is correct
54 Correct 761 ms 399424 KB Output is correct
55 Correct 660 ms 395996 KB Output is correct
56 Correct 660 ms 398564 KB Output is correct
57 Correct 721 ms 392548 KB Output is correct
58 Correct 676 ms 395324 KB Output is correct
59 Correct 664 ms 397944 KB Output is correct
60 Correct 688 ms 391600 KB Output is correct
61 Correct 299 ms 394100 KB Output is correct
62 Correct 653 ms 405712 KB Output is correct
63 Correct 734 ms 400096 KB Output is correct
64 Correct 757 ms 397392 KB Output is correct
65 Correct 805 ms 393000 KB Output is correct
66 Correct 721 ms 390504 KB Output is correct
67 Correct 405 ms 380292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 149 ms 366644 KB Output is correct
2 Correct 146 ms 366668 KB Output is correct
3 Correct 153 ms 366548 KB Output is correct
4 Correct 144 ms 366564 KB Output is correct
5 Correct 147 ms 366844 KB Output is correct
6 Correct 147 ms 366832 KB Output is correct
7 Correct 148 ms 366872 KB Output is correct
8 Correct 146 ms 366920 KB Output is correct
9 Correct 148 ms 366952 KB Output is correct
10 Correct 147 ms 366836 KB Output is correct
11 Correct 145 ms 366844 KB Output is correct
12 Correct 149 ms 366820 KB Output is correct
13 Correct 147 ms 366988 KB Output is correct
14 Correct 149 ms 366848 KB Output is correct
15 Correct 145 ms 366796 KB Output is correct
16 Correct 147 ms 366792 KB Output is correct
17 Correct 148 ms 366944 KB Output is correct
18 Correct 145 ms 366884 KB Output is correct
19 Correct 149 ms 366816 KB Output is correct
20 Correct 149 ms 366864 KB Output is correct
21 Correct 169 ms 366912 KB Output is correct
22 Correct 153 ms 366948 KB Output is correct
23 Correct 146 ms 366868 KB Output is correct
24 Correct 148 ms 366824 KB Output is correct
25 Correct 147 ms 367076 KB Output is correct
26 Correct 147 ms 366772 KB Output is correct
27 Correct 145 ms 366656 KB Output is correct
28 Correct 148 ms 366796 KB Output is correct
29 Correct 148 ms 366828 KB Output is correct
30 Correct 145 ms 366736 KB Output is correct
31 Correct 842 ms 395112 KB Output is correct
32 Correct 191 ms 373224 KB Output is correct
33 Correct 776 ms 389472 KB Output is correct
34 Correct 780 ms 389968 KB Output is correct
35 Correct 848 ms 395000 KB Output is correct
36 Correct 833 ms 394860 KB Output is correct
37 Correct 657 ms 387188 KB Output is correct
38 Correct 639 ms 387036 KB Output is correct
39 Correct 541 ms 386764 KB Output is correct
40 Correct 564 ms 386620 KB Output is correct
41 Correct 688 ms 391260 KB Output is correct
42 Correct 662 ms 391124 KB Output is correct
43 Correct 183 ms 374016 KB Output is correct
44 Correct 682 ms 391184 KB Output is correct
45 Correct 665 ms 391060 KB Output is correct
46 Correct 623 ms 390956 KB Output is correct
47 Correct 445 ms 390496 KB Output is correct
48 Correct 459 ms 390240 KB Output is correct
49 Correct 496 ms 390472 KB Output is correct
50 Correct 524 ms 390872 KB Output is correct
51 Correct 512 ms 390504 KB Output is correct
52 Correct 4267 ms 534228 KB Output is correct
53 Correct 4686 ms 514120 KB Output is correct
54 Correct 2999 ms 542892 KB Output is correct
55 Correct 4159 ms 544908 KB Output is correct
56 Correct 4338 ms 517596 KB Output is correct
57 Correct 4908 ms 515968 KB Output is correct
58 Correct 2765 ms 542948 KB Output is correct
59 Correct 3256 ms 545728 KB Output is correct
60 Correct 3381 ms 530176 KB Output is correct
61 Correct 3755 ms 518756 KB Output is correct
62 Correct 2350 ms 516412 KB Output is correct
63 Correct 2499 ms 517720 KB Output is correct
64 Execution timed out 5083 ms 526360 KB Time limit exceeded
65 Halted 0 ms 0 KB -