Submission #777628

# Submission time Handle Problem Language Result Execution time Memory
777628 2023-07-09T11:33:44 Z Sam_a17 New Home (APIO18_new_home) C++17
57 / 100
5000 ms 554948 KB
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
//#include "temp.cpp"
#include <cstdio>
using namespace std;
 
#ifndef ONLINE_JUDGE
#define dbg(x) cerr << #x <<" "; print(x); cerr << endl;
#else
#define dbg(x)
#endif
 
#define sz(x) (int)x.size()
#define len(x) (int)x.length()
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define clr(x) (x).clear()
#define uniq(x) x.resize(unique(all(x)) - x.begin());
#define blt __builtin_popcount
 
#define pb push_back
#define popf pop_front
#define popb pop_back
#define ld long double
#define ll long long
 
void print(long long t) {cerr << t;}
void print(int t) {cerr << t;}
void print(string t) {cerr << t;}
void print(char t) {cerr << t;}
void print(double t) {cerr << t;}
void print(long double t) {cerr << t;}
void print(unsigned long long t) {cerr << t;}
 
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#define nl '\n'
 
// Indexed Set  
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
template <class T, class V> void print(pair <T, V> p);
template <class T> void print(vector <T> v);
template <class T> void print(set <T> v);
template <class T, class V> void print(map <T, V> v);
template <class T> void print(multiset <T> v);
template <class T, class V> void print(T v[],V n) {cerr << "["; for(int i = 0; i < n; i++) {print(v[i]); cerr << " "; } cerr << "]";}
template <class T, class V> void print(pair <T, V> p) {cerr << "{"; print(p.first); cerr << ","; print(p.second); cerr << "}";}
template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
// template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(set <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(multiset <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(Tree <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T, class V> void print(map <T, V> v) {cerr << "[ "; for (auto i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(deque <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
 
 
// for random generations
mt19937 myrand(chrono::steady_clock::now().time_since_epoch().count());
// mt19937 myrand(131);
 
// for grid problems
int dx[8] = {-1,0,1,0,1,-1,1,-1};
int dy[8] = {0,1,0,-1,1,1,-1,-1};
 
// lowest / (1 << 17) >= 1e5 / (1 << 18) >= 2e5 / (1 << 21) >= 1e6
void fastIO() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr); cout.tie(nullptr);
}
// file in/out
void setIO(string str = "") {
  fastIO();
 
  // if(str == "input") {
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
  // } else if(str != "") {
    // freopen((str + ".in").c_str(), "r", stdin);
    // freopen((str + ".out").c_str(), "w", stdout);
  // }
}
 
const int N = 3e6 + 10, maxM = 3e5 + 10, inf = 1e8, infi = 2e9 + 10;
vector<pair<pair<int, int>, int>> to_add[N];
int n, k, q;
 
struct node {
  int x, t, a, b;
};
 
vector<node> cand;

struct segTreeMax {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size, sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, 0);
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *prev(mt[x].end());
      } else {
        mTree[x + sub] = -1;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = max(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return -1;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return max(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

struct segTreeMin {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size;
  int sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, INT32_MAX);
  }

  int ind(int xx) {
    if(xx >= sub) {
      return xx - sub;
    } else {
      return xx;
    }
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *mt[x].begin();
      } else {
        mTree[x + sub] = INT32_MAX;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = min(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return INT32_MAX;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return min(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

segTreeMax rs;
segTreeMin ls;

vector<int> compress_times, compress_locations;
map<int, int> mx_col[maxM];
int pat[maxM];

int get(int val) {
  return lower_bound(all(compress_locations), val) - compress_locations.begin();
}

void add_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;
  
  if(mid <= r) {
    rs.upd(mid, r);
  }
  if(l < mid) {
    ls.upd(midone, l);
  }
}

void del_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;

  if(mid <= r) rs.upd(mid, -r);
  if(l < mid) ls.upd(midone, -l);
}

void solve_() {
  cin >> n >> k >> q;
 
  for(int i = 1; i <= n; i++) {
    int x, t, a, b; 
    cin >> x >> t >> a >> b;
    
    compress_times.push_back(a);
    compress_times.push_back(b + 1);

    compress_locations.push_back(x);

    cand.push_back({x, t, a, b});
  }

  vector<pair<int, int>> queries;
  for(int i = 1; i <= q; i++) {
    int l, y; cin >> l >> y;
    compress_locations.push_back(l);
    compress_times.push_back(y);
    queries.emplace_back(l, y);
  }

  compress_locations.push_back(-infi);
  compress_locations.push_back(infi);
  
  sort(all(compress_times));
  uniq(compress_times);


  for(auto &i: cand) {
    i.a = lower_bound(all(compress_times), i.a) - compress_times.begin();
    i.b = lower_bound(all(compress_times), i.b + 1) - compress_times.begin();

    to_add[i.a].push_back({{i.x, i.t}, 1});
    to_add[i.b].push_back({{i.x, i.t}, 2});
  } 

  for(int i = 1; i <= k; i++) {
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;
        
        compress_locations.push_back(mid1);
        compress_locations.push_back(mid1 - 1);
        
        compress_locations.push_back(mid2);
        compress_locations.push_back(mid2 - 1);
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          auto it_prev = prev(it), it_next = next(it);

          int mid1 = (it_next->first + it_prev->first + 1) / 2;
          
          compress_locations.push_back(mid1);
          compress_locations.push_back(mid1 - 1);
  
          mx_col[j.second].erase(j.first);
        }
      } 
    }
  }

  int it = 1;
  for(auto &i: queries) {
    i.second = lower_bound(all(compress_times), i.second) - compress_times.begin();
    to_add[i.second].push_back({{i.first, it}, 0});
    it++;
  }

  sort(all(compress_locations));
  uniq(compress_locations);
  ls.init(sz(compress_locations) + 2);
  rs.init(sz(compress_locations) + 2);
  rs.gt(0);
  ls.gt(0);

  for(int i = 1; i <= k; i++) {
    mx_col[i].clear();
    
    mx_col[i][-infi] = 1;
    mx_col[i][infi] = 1;
  }

  vector<bool> empty(k + 1, true);
  int emp = k;
  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(mx_col[j.second].find(j.first) != mx_col[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        if(sz(mx_col[j.second]) == 3) {
          empty[j.second] = false;
          emp--;
        }

        auto it = mx_col[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (it_next->first + j.first + 1) / 2;
        int mid2 = (it_prev->first + j.first + 1) / 2;

        add_interval(j.second, it_prev->first, j.first);
        add_interval(j.second, j.first, it_next->first);

        if(it_prev->first != -infi || it_next->first != infi) {
          del_interval(j.second, it_prev->first, it_next->first);
        }
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = mx_col[j.second].find(j.first);
          if(sz(mx_col[j.second]) == 3) {
            empty[j.second] = true;
            emp++;
          }

          auto it_prev = prev(it), it_next = next(it);
          del_interval(j.second, it_prev->first, j.first);
          del_interval(j.second, j.first, it_next->first);

          if(it_prev->first != -infi || it_next->first != infi) {
            add_interval(j.second, it_prev->first, it_next->first);
          }

          mx_col[j.second].erase(j.first);
        }
      } else {
        auto j = cc.first;
        if(emp) {
          pat[j.second] = -1;
        } else {
          int cur = lower_bound(all(compress_locations), j.first) - compress_locations.begin();
          int li = ls.qry(cur, sz(compress_locations) + 1);
          int ri = rs.qry(0, cur + 1);

          if(li <= cur) {
            pat[j.second] = max(pat[j.second], j.first - compress_locations[li]);
          }

          if(ri >= cur) {
            pat[j.second] = max(pat[j.second], compress_locations[ri] - j.first);
          }
        }
      }
    }
  }

  for(int i = 1; i <= q; i++) {
    cout << pat[i] << '\n';
  }
 }
 
int main() {
  setIO();
 
  auto solve = [&](int test_case)-> void {
    for(int i = 1; i <= test_case; i++) {
      solve_();
    }
  };
 
  int test_cases = 1;
  // cin >> test_cases;
  solve(test_cases);
 
  return 0;
}

Compilation message

new_home.cpp: In function 'void solve_()':
new_home.cpp:429:13: warning: unused variable 'mid1' [-Wunused-variable]
  429 |         int mid1 = (it_next->first + j.first + 1) / 2;
      |             ^~~~
new_home.cpp:430:13: warning: unused variable 'mid2' [-Wunused-variable]
  430 |         int mid2 = (it_prev->first + j.first + 1) / 2;
      |             ^~~~
# Verdict Execution time Memory Grader output
1 Correct 161 ms 366632 KB Output is correct
2 Correct 167 ms 366576 KB Output is correct
3 Correct 148 ms 366604 KB Output is correct
4 Correct 149 ms 366628 KB Output is correct
5 Correct 150 ms 366728 KB Output is correct
6 Correct 147 ms 366764 KB Output is correct
7 Correct 150 ms 366904 KB Output is correct
8 Correct 162 ms 366792 KB Output is correct
9 Correct 145 ms 367076 KB Output is correct
10 Correct 146 ms 366852 KB Output is correct
11 Correct 147 ms 366736 KB Output is correct
12 Correct 148 ms 366740 KB Output is correct
13 Correct 144 ms 366856 KB Output is correct
14 Correct 146 ms 366796 KB Output is correct
15 Correct 145 ms 366880 KB Output is correct
16 Correct 145 ms 366828 KB Output is correct
17 Correct 151 ms 366764 KB Output is correct
18 Correct 148 ms 366884 KB Output is correct
19 Correct 146 ms 366796 KB Output is correct
20 Correct 148 ms 366800 KB Output is correct
21 Correct 146 ms 366804 KB Output is correct
22 Correct 147 ms 366912 KB Output is correct
23 Correct 147 ms 366796 KB Output is correct
24 Correct 145 ms 366864 KB Output is correct
25 Correct 147 ms 366868 KB Output is correct
26 Correct 145 ms 366860 KB Output is correct
27 Correct 155 ms 366760 KB Output is correct
28 Correct 145 ms 366836 KB Output is correct
29 Correct 149 ms 366852 KB Output is correct
30 Correct 144 ms 366796 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 161 ms 366632 KB Output is correct
2 Correct 167 ms 366576 KB Output is correct
3 Correct 148 ms 366604 KB Output is correct
4 Correct 149 ms 366628 KB Output is correct
5 Correct 150 ms 366728 KB Output is correct
6 Correct 147 ms 366764 KB Output is correct
7 Correct 150 ms 366904 KB Output is correct
8 Correct 162 ms 366792 KB Output is correct
9 Correct 145 ms 367076 KB Output is correct
10 Correct 146 ms 366852 KB Output is correct
11 Correct 147 ms 366736 KB Output is correct
12 Correct 148 ms 366740 KB Output is correct
13 Correct 144 ms 366856 KB Output is correct
14 Correct 146 ms 366796 KB Output is correct
15 Correct 145 ms 366880 KB Output is correct
16 Correct 145 ms 366828 KB Output is correct
17 Correct 151 ms 366764 KB Output is correct
18 Correct 148 ms 366884 KB Output is correct
19 Correct 146 ms 366796 KB Output is correct
20 Correct 148 ms 366800 KB Output is correct
21 Correct 146 ms 366804 KB Output is correct
22 Correct 147 ms 366912 KB Output is correct
23 Correct 147 ms 366796 KB Output is correct
24 Correct 145 ms 366864 KB Output is correct
25 Correct 147 ms 366868 KB Output is correct
26 Correct 145 ms 366860 KB Output is correct
27 Correct 155 ms 366760 KB Output is correct
28 Correct 145 ms 366836 KB Output is correct
29 Correct 149 ms 366852 KB Output is correct
30 Correct 144 ms 366796 KB Output is correct
31 Correct 891 ms 394344 KB Output is correct
32 Correct 203 ms 372884 KB Output is correct
33 Correct 818 ms 388696 KB Output is correct
34 Correct 872 ms 388900 KB Output is correct
35 Correct 836 ms 394164 KB Output is correct
36 Correct 824 ms 393960 KB Output is correct
37 Correct 631 ms 386236 KB Output is correct
38 Correct 645 ms 386072 KB Output is correct
39 Correct 549 ms 385900 KB Output is correct
40 Correct 584 ms 385664 KB Output is correct
41 Correct 669 ms 390332 KB Output is correct
42 Correct 673 ms 390256 KB Output is correct
43 Correct 180 ms 373576 KB Output is correct
44 Correct 680 ms 390352 KB Output is correct
45 Correct 667 ms 390308 KB Output is correct
46 Correct 635 ms 390416 KB Output is correct
47 Correct 481 ms 390000 KB Output is correct
48 Correct 452 ms 389564 KB Output is correct
49 Correct 490 ms 389792 KB Output is correct
50 Correct 524 ms 390252 KB Output is correct
51 Correct 507 ms 389812 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4539 ms 533568 KB Output is correct
2 Correct 4770 ms 513784 KB Output is correct
3 Correct 3138 ms 552368 KB Output is correct
4 Correct 4167 ms 554044 KB Output is correct
5 Correct 4315 ms 525812 KB Output is correct
6 Correct 4841 ms 526068 KB Output is correct
7 Correct 2929 ms 552376 KB Output is correct
8 Correct 3415 ms 554948 KB Output is correct
9 Correct 3702 ms 539428 KB Output is correct
10 Correct 3867 ms 527480 KB Output is correct
11 Correct 2450 ms 525068 KB Output is correct
12 Correct 2629 ms 526888 KB Output is correct
# Verdict Execution time Memory Grader output
1 Execution timed out 5057 ms 524064 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 161 ms 366632 KB Output is correct
2 Correct 167 ms 366576 KB Output is correct
3 Correct 148 ms 366604 KB Output is correct
4 Correct 149 ms 366628 KB Output is correct
5 Correct 150 ms 366728 KB Output is correct
6 Correct 147 ms 366764 KB Output is correct
7 Correct 150 ms 366904 KB Output is correct
8 Correct 162 ms 366792 KB Output is correct
9 Correct 145 ms 367076 KB Output is correct
10 Correct 146 ms 366852 KB Output is correct
11 Correct 147 ms 366736 KB Output is correct
12 Correct 148 ms 366740 KB Output is correct
13 Correct 144 ms 366856 KB Output is correct
14 Correct 146 ms 366796 KB Output is correct
15 Correct 145 ms 366880 KB Output is correct
16 Correct 145 ms 366828 KB Output is correct
17 Correct 151 ms 366764 KB Output is correct
18 Correct 148 ms 366884 KB Output is correct
19 Correct 146 ms 366796 KB Output is correct
20 Correct 148 ms 366800 KB Output is correct
21 Correct 146 ms 366804 KB Output is correct
22 Correct 147 ms 366912 KB Output is correct
23 Correct 147 ms 366796 KB Output is correct
24 Correct 145 ms 366864 KB Output is correct
25 Correct 147 ms 366868 KB Output is correct
26 Correct 145 ms 366860 KB Output is correct
27 Correct 155 ms 366760 KB Output is correct
28 Correct 145 ms 366836 KB Output is correct
29 Correct 149 ms 366852 KB Output is correct
30 Correct 144 ms 366796 KB Output is correct
31 Correct 891 ms 394344 KB Output is correct
32 Correct 203 ms 372884 KB Output is correct
33 Correct 818 ms 388696 KB Output is correct
34 Correct 872 ms 388900 KB Output is correct
35 Correct 836 ms 394164 KB Output is correct
36 Correct 824 ms 393960 KB Output is correct
37 Correct 631 ms 386236 KB Output is correct
38 Correct 645 ms 386072 KB Output is correct
39 Correct 549 ms 385900 KB Output is correct
40 Correct 584 ms 385664 KB Output is correct
41 Correct 669 ms 390332 KB Output is correct
42 Correct 673 ms 390256 KB Output is correct
43 Correct 180 ms 373576 KB Output is correct
44 Correct 680 ms 390352 KB Output is correct
45 Correct 667 ms 390308 KB Output is correct
46 Correct 635 ms 390416 KB Output is correct
47 Correct 481 ms 390000 KB Output is correct
48 Correct 452 ms 389564 KB Output is correct
49 Correct 490 ms 389792 KB Output is correct
50 Correct 524 ms 390252 KB Output is correct
51 Correct 507 ms 389812 KB Output is correct
52 Correct 674 ms 407648 KB Output is correct
53 Correct 659 ms 400680 KB Output is correct
54 Correct 795 ms 401428 KB Output is correct
55 Correct 710 ms 397896 KB Output is correct
56 Correct 721 ms 400432 KB Output is correct
57 Correct 743 ms 394448 KB Output is correct
58 Correct 685 ms 397376 KB Output is correct
59 Correct 788 ms 399944 KB Output is correct
60 Correct 720 ms 393516 KB Output is correct
61 Correct 319 ms 395652 KB Output is correct
62 Correct 687 ms 407716 KB Output is correct
63 Correct 805 ms 402032 KB Output is correct
64 Correct 794 ms 399472 KB Output is correct
65 Correct 889 ms 394980 KB Output is correct
66 Correct 769 ms 392940 KB Output is correct
67 Correct 433 ms 381308 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 161 ms 366632 KB Output is correct
2 Correct 167 ms 366576 KB Output is correct
3 Correct 148 ms 366604 KB Output is correct
4 Correct 149 ms 366628 KB Output is correct
5 Correct 150 ms 366728 KB Output is correct
6 Correct 147 ms 366764 KB Output is correct
7 Correct 150 ms 366904 KB Output is correct
8 Correct 162 ms 366792 KB Output is correct
9 Correct 145 ms 367076 KB Output is correct
10 Correct 146 ms 366852 KB Output is correct
11 Correct 147 ms 366736 KB Output is correct
12 Correct 148 ms 366740 KB Output is correct
13 Correct 144 ms 366856 KB Output is correct
14 Correct 146 ms 366796 KB Output is correct
15 Correct 145 ms 366880 KB Output is correct
16 Correct 145 ms 366828 KB Output is correct
17 Correct 151 ms 366764 KB Output is correct
18 Correct 148 ms 366884 KB Output is correct
19 Correct 146 ms 366796 KB Output is correct
20 Correct 148 ms 366800 KB Output is correct
21 Correct 146 ms 366804 KB Output is correct
22 Correct 147 ms 366912 KB Output is correct
23 Correct 147 ms 366796 KB Output is correct
24 Correct 145 ms 366864 KB Output is correct
25 Correct 147 ms 366868 KB Output is correct
26 Correct 145 ms 366860 KB Output is correct
27 Correct 155 ms 366760 KB Output is correct
28 Correct 145 ms 366836 KB Output is correct
29 Correct 149 ms 366852 KB Output is correct
30 Correct 144 ms 366796 KB Output is correct
31 Correct 891 ms 394344 KB Output is correct
32 Correct 203 ms 372884 KB Output is correct
33 Correct 818 ms 388696 KB Output is correct
34 Correct 872 ms 388900 KB Output is correct
35 Correct 836 ms 394164 KB Output is correct
36 Correct 824 ms 393960 KB Output is correct
37 Correct 631 ms 386236 KB Output is correct
38 Correct 645 ms 386072 KB Output is correct
39 Correct 549 ms 385900 KB Output is correct
40 Correct 584 ms 385664 KB Output is correct
41 Correct 669 ms 390332 KB Output is correct
42 Correct 673 ms 390256 KB Output is correct
43 Correct 180 ms 373576 KB Output is correct
44 Correct 680 ms 390352 KB Output is correct
45 Correct 667 ms 390308 KB Output is correct
46 Correct 635 ms 390416 KB Output is correct
47 Correct 481 ms 390000 KB Output is correct
48 Correct 452 ms 389564 KB Output is correct
49 Correct 490 ms 389792 KB Output is correct
50 Correct 524 ms 390252 KB Output is correct
51 Correct 507 ms 389812 KB Output is correct
52 Correct 4539 ms 533568 KB Output is correct
53 Correct 4770 ms 513784 KB Output is correct
54 Correct 3138 ms 552368 KB Output is correct
55 Correct 4167 ms 554044 KB Output is correct
56 Correct 4315 ms 525812 KB Output is correct
57 Correct 4841 ms 526068 KB Output is correct
58 Correct 2929 ms 552376 KB Output is correct
59 Correct 3415 ms 554948 KB Output is correct
60 Correct 3702 ms 539428 KB Output is correct
61 Correct 3867 ms 527480 KB Output is correct
62 Correct 2450 ms 525068 KB Output is correct
63 Correct 2629 ms 526888 KB Output is correct
64 Execution timed out 5057 ms 524064 KB Time limit exceeded
65 Halted 0 ms 0 KB -