Submission #777620

# Submission time Handle Problem Language Result Execution time Memory
777620 2023-07-09T11:26:23 Z Sam_a17 New Home (APIO18_new_home) C++17
47 / 100
5000 ms 565836 KB
#define _CRT_SECURE_NO_WARNINGS
#include <bits/stdc++.h>
//#include "temp.cpp"
#include <cstdio>
using namespace std;
 
#ifndef ONLINE_JUDGE
#define dbg(x) cerr << #x <<" "; print(x); cerr << endl;
#else
#define dbg(x)
#endif
 
#define sz(x) (int)x.size()
#define len(x) (int)x.length()
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define clr(x) (x).clear()
#define uniq(x) x.resize(unique(all(x)) - x.begin());
#define blt __builtin_popcount
 
#define pb push_back
#define popf pop_front
#define popb pop_back
#define ld long double
#define ll long long
 
void print(long long t) {cerr << t;}
void print(int t) {cerr << t;}
void print(string t) {cerr << t;}
void print(char t) {cerr << t;}
void print(double t) {cerr << t;}
void print(long double t) {cerr << t;}
void print(unsigned long long t) {cerr << t;}
 
#include <ext/pb_ds/assoc_container.hpp>
using namespace __gnu_pbds;
#define nl '\n'
 
// Indexed Set  
template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
 
template <class T, class V> void print(pair <T, V> p);
template <class T> void print(vector <T> v);
template <class T> void print(set <T> v);
template <class T, class V> void print(map <T, V> v);
template <class T> void print(multiset <T> v);
template <class T, class V> void print(T v[],V n) {cerr << "["; for(int i = 0; i < n; i++) {print(v[i]); cerr << " "; } cerr << "]";}
template <class T, class V> void print(pair <T, V> p) {cerr << "{"; print(p.first); cerr << ","; print(p.second); cerr << "}";}
template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
// template <class T> void print(vector <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(set <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(multiset <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(Tree <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T, class V> void print(map <T, V> v) {cerr << "[ "; for (auto i : v) {print(i); cerr << " ";} cerr << "]";}
template <class T> void print(deque <T> v) {cerr << "[ "; for (T i : v) {print(i); cerr << " ";} cerr << "]";}
 
 
// for random generations
mt19937 myrand(chrono::steady_clock::now().time_since_epoch().count());
// mt19937 myrand(131);
 
// for grid problems
int dx[8] = {-1,0,1,0,1,-1,1,-1};
int dy[8] = {0,1,0,-1,1,1,-1,-1};
 
// lowest / (1 << 17) >= 1e5 / (1 << 18) >= 2e5 / (1 << 21) >= 1e6
void fastIO() {
  ios_base::sync_with_stdio(false);
  cin.tie(nullptr); cout.tie(nullptr);
}
// file in/out
void setIO(string str = "") {
  fastIO();
 
  // if(str == "input") {
    // freopen("input.txt", "r", stdin);
    // freopen("output.txt", "w", stdout);
  // } else if(str != "") {
    // freopen((str + ".in").c_str(), "r", stdin);
    // freopen((str + ".out").c_str(), "w", stdout);
  // }
}
 
const int N = 3e6 + 10, maxM = 3e5 + 10, inf = 1e8, infi = 2e9 + 10;
vector<pair<pair<int, int>, int>> to_add[N];
int n, k, q;
 
struct node {
  int x, t, a, b;
};
 
vector<node> cand;

struct segTreeMax {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size, sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, 0);
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *prev(mt[x].end());
      } else {
        mTree[x + sub] = -1;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = max(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return -1;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return max(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

struct segTreeMin {  // Range Queries
  multiset<int> mt[N];
  vector<int> mTree;
  int size;
  int sub;

  void init(ll n) {
    size = 1;
    while(size < n)  {
      size *= 2;
    }
    mTree.assign(2 * size - 1, INT32_MAX);
  }

  int ind(int xx) {
    if(xx >= sub) {
      return xx - sub;
    } else {
      return xx;
    }
  }

  void upd(int u, ll v, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      x -= sub;
      if(v >= 0) {
        mt[x].insert(v);
      } else {
        assert(mt[x].find(-v) != mt[x].end());
        mt[x].erase(mt[x].find(-v));
      }

      if(!mt[x].empty()) {
        mTree[x + sub] = *mt[x].begin();
      } else {
        mTree[x + sub] = INT32_MAX;
      }
      return;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      upd(u, v, 2 * x + 1, lx, m);
    }else {
      upd(u, v, 2 * x + 2, m, rx);
    }
    mTree[x] = min(mTree[2 * x + 1], mTree[2 * x + 2]);
  }

  void upd(int u, ll v) {
    upd(u, v, 0, 0, size);
  }

  int gt(int u, int x, int lx, int rx) { // set value at pos u
    if(rx - lx == 1) {
      sub = x;
      return x;
    }

    int m = (lx + rx) / 2;
    if(u < m) {
      return gt(u, 2 * x + 1, lx, m);
    }else {
      return gt(u, 2 * x + 2, m, rx);
    }
  }

  int gt(int u) {
    return gt(u, 0, 0, size);
  }

  int qry(int l, int r, int x, int lx, int rx) { // range queries
    if(l >= rx || lx >= r) {
      return INT32_MAX;
    }

    if(lx >= l && r >= rx) {
      return mTree[x];
    }

    int m = (rx + lx) / 2;
    int s1 = qry(l, r, 2 * x + 1, lx, m);
    int s2 = qry(l, r, 2 * x + 2, m, rx);
    return min(s1, s2);
  }

  int qry(int l, int r) {
    return qry(l, r, 0,0,size);
  }
};

segTreeMax rs;
segTreeMin ls;

vector<int> compress_times, compress_locations;
multiset<int> color[maxM];
map<int, int> mx_col[maxM];
int pat[maxM];

int get(int val) {
  return lower_bound(all(compress_locations), val) - compress_locations.begin();
}

void add_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;
  
  if(mid <= r) {
    rs.upd(mid, r);
  }
  if(l < mid) {
    ls.upd(midone, l);
  }
}

void del_interval(int type, int l, int r) {
  int mid = (l + r + 1) / 2;
  
  l = get(l);
  r = get(r);
  int midone = get(mid - 1);
  mid = midone + 1;

  if(mid <= r) rs.upd(mid, -r);
  if(l < mid) ls.upd(midone, -l);
}

void solve_() {
  cin >> n >> k >> q;
 
  for(int i = 1; i <= n; i++) {
    int x, t, a, b; 
    cin >> x >> t >> a >> b;
    
    compress_times.push_back(a);
    compress_times.push_back(b + 1);

    compress_locations.push_back(x);

    cand.push_back({x, t, a, b});
  }

  vector<pair<int, int>> queries;
  for(int i = 1; i <= q; i++) {
    int l, y; cin >> l >> y;
    compress_locations.push_back(l);
    compress_times.push_back(y);
    queries.emplace_back(l, y);
  }

  compress_locations.push_back(-infi);
  compress_locations.push_back(infi);
  
  sort(all(compress_times));
  uniq(compress_times);


  for(auto &i: cand) {
    i.a = lower_bound(all(compress_times), i.a) - compress_times.begin();
    i.b = lower_bound(all(compress_times), i.b + 1) - compress_times.begin();

    to_add[i.a].push_back({{i.x, i.t}, 1});
    to_add[i.b].push_back({{i.x, i.t}, 2});
  } 

  for(int i = 1; i <= k; i++) {
    color[i].insert(-infi);
    color[i].insert(infi);
  }

  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(color[j.second].find(j.first) != color[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        color[j.second].insert(j.first);

        mx_col[j.second][j.first] = 1;
        auto it = color[j.second].find(j.first);
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (*it_next + j.first + 1) / 2;
        int mid2 = (*it_prev + j.first + 1) / 2;
        
        compress_locations.push_back(mid1);
        compress_locations.push_back(mid1 - 1);
        
        compress_locations.push_back(mid2);
        compress_locations.push_back(mid2 - 1);
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = color[j.second].find(j.first);
          auto it_prev = prev(it), it_next = next(it);

          int mid1 = (*it_next + *it_prev + 1) / 2;
          
          compress_locations.push_back(mid1);
          compress_locations.push_back(mid1 - 1);
  
          color[j.second].erase(j.first);
        }
      } 
    }
  }

  int it = 1;
  for(auto &i: queries) {
    i.second = lower_bound(all(compress_times), i.second) - compress_times.begin();
    to_add[i.second].push_back({{i.first, it}, 0});
    it++;
  }

  sort(all(compress_locations));
  uniq(compress_locations);
  ls.init(sz(compress_locations) + 2);
  rs.init(sz(compress_locations) + 2);
  rs.gt(0);
  ls.gt(0);

  for(int i = 1; i <= k; i++) {
    color[i].clear();
    mx_col[i].clear();
    
    color[i].insert(-infi);
    color[i].insert(infi);
  }

  vector<bool> empty(k + 1, true);
  int emp = k;
  for(int i = 0; i < sz(compress_times); i++) {
    for(auto cc: to_add[i]) {
      if(cc.second == 1) { 
        auto j = cc.first;
        if(color[j.second].find(j.first) != color[j.second].end()) {
          mx_col[j.second][j.first]++;
          continue;
        }

        mx_col[j.second][j.first] = 1;
        color[j.second].insert(j.first);
        if(sz(color[j.second]) == 3) {
          assert(empty[j.second]);
          empty[j.second] = false;
          emp--;
        }

        // ete inchvor bani aranqna
        auto it = color[j.second].find(j.first);
        assert(it != color[j.second].begin());
        assert(it != prev(color[j.second].end()));
        auto it_prev = prev(it), it_next = next(it);

        int mid1 = (*it_next + j.first + 1) / 2;
        int mid2 = (*it_prev + j.first + 1) / 2;


        add_interval(j.second, *it_prev, j.first);
        add_interval(j.second, j.first, *it_next);


        if(*it_prev != -infi || *it_next != infi) {
          del_interval(j.second, *it_prev, *it_next);
        }
      } else if(cc.second == 2) {
        auto j = cc.first;
        mx_col[j.second][j.first]--;
        if(mx_col[j.second][j.first] == 0) {

          auto it = color[j.second].find(j.first);

          if(sz(color[j.second]) == 3) {
            empty[j.second] = true;
            emp++;
          }

          auto it_prev = prev(it), it_next = next(it);
          del_interval(j.second, *it_prev, j.first);
          del_interval(j.second, j.first, *it_next);

          if(*it_prev != -infi || *it_next != infi) {
            add_interval(j.second, *it_prev, *it_next);
          }

          color[j.second].erase(j.first);
        }
      } else {
        auto j = cc.first;
        if(emp) {
          pat[j.second] = -1;
        } else {
          int cur = lower_bound(all(compress_locations), j.first) - compress_locations.begin();
          int li = ls.qry(cur, sz(compress_locations) + 1);
          int ri = rs.qry(0, cur + 1);

          if(li <= cur) {
            pat[j.second] = max(pat[j.second], j.first - compress_locations[li]);
          }

          if(ri >= cur) {
            pat[j.second] = max(pat[j.second], compress_locations[ri] - j.first);
          }
        }
      }
    }
  }

  for(int i = 1; i <= q; i++) {
    cout << pat[i] << '\n';
  }
 }
 
int main() {
  setIO();
 
  auto solve = [&](int test_case)-> void {
    for(int i = 1; i <= test_case; i++) {
      solve_();
    }
  };
 
  int test_cases = 1;
  // cin >> test_cases;
  solve(test_cases);
 
  return 0;
}

Compilation message

new_home.cpp: In function 'void solve_()':
new_home.cpp:438:13: warning: unused variable 'mid1' [-Wunused-variable]
  438 |         int mid1 = (*it_next + j.first + 1) / 2;
      |             ^~~~
new_home.cpp:439:13: warning: unused variable 'mid2' [-Wunused-variable]
  439 |         int mid2 = (*it_prev + j.first + 1) / 2;
      |             ^~~~
# Verdict Execution time Memory Grader output
1 Correct 144 ms 380700 KB Output is correct
2 Correct 147 ms 380680 KB Output is correct
3 Correct 145 ms 380744 KB Output is correct
4 Correct 150 ms 380668 KB Output is correct
5 Correct 149 ms 380780 KB Output is correct
6 Correct 158 ms 380856 KB Output is correct
7 Correct 159 ms 380976 KB Output is correct
8 Correct 157 ms 380908 KB Output is correct
9 Correct 174 ms 380992 KB Output is correct
10 Correct 160 ms 380856 KB Output is correct
11 Correct 165 ms 380896 KB Output is correct
12 Correct 162 ms 380896 KB Output is correct
13 Correct 166 ms 380940 KB Output is correct
14 Correct 155 ms 380924 KB Output is correct
15 Correct 160 ms 380972 KB Output is correct
16 Correct 171 ms 381048 KB Output is correct
17 Correct 162 ms 380948 KB Output is correct
18 Correct 152 ms 380880 KB Output is correct
19 Correct 146 ms 380944 KB Output is correct
20 Correct 144 ms 380896 KB Output is correct
21 Correct 153 ms 380876 KB Output is correct
22 Correct 180 ms 381036 KB Output is correct
23 Correct 146 ms 380936 KB Output is correct
24 Correct 150 ms 380948 KB Output is correct
25 Correct 166 ms 380916 KB Output is correct
26 Correct 169 ms 380900 KB Output is correct
27 Correct 144 ms 380748 KB Output is correct
28 Correct 158 ms 380940 KB Output is correct
29 Correct 155 ms 380936 KB Output is correct
30 Correct 147 ms 380876 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 144 ms 380700 KB Output is correct
2 Correct 147 ms 380680 KB Output is correct
3 Correct 145 ms 380744 KB Output is correct
4 Correct 150 ms 380668 KB Output is correct
5 Correct 149 ms 380780 KB Output is correct
6 Correct 158 ms 380856 KB Output is correct
7 Correct 159 ms 380976 KB Output is correct
8 Correct 157 ms 380908 KB Output is correct
9 Correct 174 ms 380992 KB Output is correct
10 Correct 160 ms 380856 KB Output is correct
11 Correct 165 ms 380896 KB Output is correct
12 Correct 162 ms 380896 KB Output is correct
13 Correct 166 ms 380940 KB Output is correct
14 Correct 155 ms 380924 KB Output is correct
15 Correct 160 ms 380972 KB Output is correct
16 Correct 171 ms 381048 KB Output is correct
17 Correct 162 ms 380948 KB Output is correct
18 Correct 152 ms 380880 KB Output is correct
19 Correct 146 ms 380944 KB Output is correct
20 Correct 144 ms 380896 KB Output is correct
21 Correct 153 ms 380876 KB Output is correct
22 Correct 180 ms 381036 KB Output is correct
23 Correct 146 ms 380936 KB Output is correct
24 Correct 150 ms 380948 KB Output is correct
25 Correct 166 ms 380916 KB Output is correct
26 Correct 169 ms 380900 KB Output is correct
27 Correct 144 ms 380748 KB Output is correct
28 Correct 158 ms 380940 KB Output is correct
29 Correct 155 ms 380936 KB Output is correct
30 Correct 147 ms 380876 KB Output is correct
31 Correct 1004 ms 411660 KB Output is correct
32 Correct 201 ms 386704 KB Output is correct
33 Correct 1070 ms 404408 KB Output is correct
34 Correct 1064 ms 404708 KB Output is correct
35 Correct 1082 ms 411484 KB Output is correct
36 Correct 988 ms 411356 KB Output is correct
37 Correct 751 ms 402668 KB Output is correct
38 Correct 727 ms 402420 KB Output is correct
39 Correct 692 ms 402496 KB Output is correct
40 Correct 653 ms 402188 KB Output is correct
41 Correct 793 ms 406900 KB Output is correct
42 Correct 765 ms 406736 KB Output is correct
43 Correct 187 ms 387312 KB Output is correct
44 Correct 770 ms 406856 KB Output is correct
45 Correct 811 ms 406912 KB Output is correct
46 Correct 766 ms 406832 KB Output is correct
47 Correct 510 ms 406312 KB Output is correct
48 Correct 502 ms 405992 KB Output is correct
49 Correct 545 ms 406348 KB Output is correct
50 Correct 585 ms 406752 KB Output is correct
51 Correct 563 ms 406452 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4856 ms 565836 KB Output is correct
2 Execution timed out 5098 ms 544912 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Execution timed out 5093 ms 553816 KB Time limit exceeded
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 144 ms 380700 KB Output is correct
2 Correct 147 ms 380680 KB Output is correct
3 Correct 145 ms 380744 KB Output is correct
4 Correct 150 ms 380668 KB Output is correct
5 Correct 149 ms 380780 KB Output is correct
6 Correct 158 ms 380856 KB Output is correct
7 Correct 159 ms 380976 KB Output is correct
8 Correct 157 ms 380908 KB Output is correct
9 Correct 174 ms 380992 KB Output is correct
10 Correct 160 ms 380856 KB Output is correct
11 Correct 165 ms 380896 KB Output is correct
12 Correct 162 ms 380896 KB Output is correct
13 Correct 166 ms 380940 KB Output is correct
14 Correct 155 ms 380924 KB Output is correct
15 Correct 160 ms 380972 KB Output is correct
16 Correct 171 ms 381048 KB Output is correct
17 Correct 162 ms 380948 KB Output is correct
18 Correct 152 ms 380880 KB Output is correct
19 Correct 146 ms 380944 KB Output is correct
20 Correct 144 ms 380896 KB Output is correct
21 Correct 153 ms 380876 KB Output is correct
22 Correct 180 ms 381036 KB Output is correct
23 Correct 146 ms 380936 KB Output is correct
24 Correct 150 ms 380948 KB Output is correct
25 Correct 166 ms 380916 KB Output is correct
26 Correct 169 ms 380900 KB Output is correct
27 Correct 144 ms 380748 KB Output is correct
28 Correct 158 ms 380940 KB Output is correct
29 Correct 155 ms 380936 KB Output is correct
30 Correct 147 ms 380876 KB Output is correct
31 Correct 1004 ms 411660 KB Output is correct
32 Correct 201 ms 386704 KB Output is correct
33 Correct 1070 ms 404408 KB Output is correct
34 Correct 1064 ms 404708 KB Output is correct
35 Correct 1082 ms 411484 KB Output is correct
36 Correct 988 ms 411356 KB Output is correct
37 Correct 751 ms 402668 KB Output is correct
38 Correct 727 ms 402420 KB Output is correct
39 Correct 692 ms 402496 KB Output is correct
40 Correct 653 ms 402188 KB Output is correct
41 Correct 793 ms 406900 KB Output is correct
42 Correct 765 ms 406736 KB Output is correct
43 Correct 187 ms 387312 KB Output is correct
44 Correct 770 ms 406856 KB Output is correct
45 Correct 811 ms 406912 KB Output is correct
46 Correct 766 ms 406832 KB Output is correct
47 Correct 510 ms 406312 KB Output is correct
48 Correct 502 ms 405992 KB Output is correct
49 Correct 545 ms 406348 KB Output is correct
50 Correct 585 ms 406752 KB Output is correct
51 Correct 563 ms 406452 KB Output is correct
52 Correct 691 ms 422472 KB Output is correct
53 Correct 686 ms 414384 KB Output is correct
54 Correct 808 ms 416192 KB Output is correct
55 Correct 758 ms 412160 KB Output is correct
56 Correct 721 ms 414964 KB Output is correct
57 Correct 791 ms 408448 KB Output is correct
58 Correct 752 ms 411060 KB Output is correct
59 Correct 846 ms 413896 KB Output is correct
60 Correct 751 ms 407552 KB Output is correct
61 Correct 331 ms 410188 KB Output is correct
62 Correct 751 ms 422496 KB Output is correct
63 Correct 885 ms 416668 KB Output is correct
64 Correct 849 ms 413756 KB Output is correct
65 Correct 843 ms 409092 KB Output is correct
66 Correct 796 ms 406988 KB Output is correct
67 Correct 433 ms 396568 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 144 ms 380700 KB Output is correct
2 Correct 147 ms 380680 KB Output is correct
3 Correct 145 ms 380744 KB Output is correct
4 Correct 150 ms 380668 KB Output is correct
5 Correct 149 ms 380780 KB Output is correct
6 Correct 158 ms 380856 KB Output is correct
7 Correct 159 ms 380976 KB Output is correct
8 Correct 157 ms 380908 KB Output is correct
9 Correct 174 ms 380992 KB Output is correct
10 Correct 160 ms 380856 KB Output is correct
11 Correct 165 ms 380896 KB Output is correct
12 Correct 162 ms 380896 KB Output is correct
13 Correct 166 ms 380940 KB Output is correct
14 Correct 155 ms 380924 KB Output is correct
15 Correct 160 ms 380972 KB Output is correct
16 Correct 171 ms 381048 KB Output is correct
17 Correct 162 ms 380948 KB Output is correct
18 Correct 152 ms 380880 KB Output is correct
19 Correct 146 ms 380944 KB Output is correct
20 Correct 144 ms 380896 KB Output is correct
21 Correct 153 ms 380876 KB Output is correct
22 Correct 180 ms 381036 KB Output is correct
23 Correct 146 ms 380936 KB Output is correct
24 Correct 150 ms 380948 KB Output is correct
25 Correct 166 ms 380916 KB Output is correct
26 Correct 169 ms 380900 KB Output is correct
27 Correct 144 ms 380748 KB Output is correct
28 Correct 158 ms 380940 KB Output is correct
29 Correct 155 ms 380936 KB Output is correct
30 Correct 147 ms 380876 KB Output is correct
31 Correct 1004 ms 411660 KB Output is correct
32 Correct 201 ms 386704 KB Output is correct
33 Correct 1070 ms 404408 KB Output is correct
34 Correct 1064 ms 404708 KB Output is correct
35 Correct 1082 ms 411484 KB Output is correct
36 Correct 988 ms 411356 KB Output is correct
37 Correct 751 ms 402668 KB Output is correct
38 Correct 727 ms 402420 KB Output is correct
39 Correct 692 ms 402496 KB Output is correct
40 Correct 653 ms 402188 KB Output is correct
41 Correct 793 ms 406900 KB Output is correct
42 Correct 765 ms 406736 KB Output is correct
43 Correct 187 ms 387312 KB Output is correct
44 Correct 770 ms 406856 KB Output is correct
45 Correct 811 ms 406912 KB Output is correct
46 Correct 766 ms 406832 KB Output is correct
47 Correct 510 ms 406312 KB Output is correct
48 Correct 502 ms 405992 KB Output is correct
49 Correct 545 ms 406348 KB Output is correct
50 Correct 585 ms 406752 KB Output is correct
51 Correct 563 ms 406452 KB Output is correct
52 Correct 4856 ms 565836 KB Output is correct
53 Execution timed out 5098 ms 544912 KB Time limit exceeded
54 Halted 0 ms 0 KB -