Submission #769662

#TimeUsernameProblemLanguageResultExecution timeMemory
769662sraeliArchery (IOI09_archery)C11
Compilation error
0 ms0 KiB
#include <iostream> #include <cassert> #include <cstring> #include <utility> using namespace std; #define MAX_N 250000 #define MAX_M 1000000000 int n, m; int ranks[MAX_N * 2]; int rank; pair<int, int> cache[MAX_N]; bool cached[MAX_N]; int black[3 * MAX_N + 1], grey[3 * MAX_N + 1], white[3 * MAX_N + 1]; /** * An O(N) simulation of the tournament, given our starting * position. We also return the number of times that the * we get bumped from target 1 to target N. */ pair<int, int> simulate(int start) { // As we might run multiple binary searches, we cache // the output from this routine for efficiency. int targ = start >> 1; if (cached[targ]) return cache[targ]; if (rank == 1) cache[targ] = make_pair(1, 0); else if (rank <= n + 1) { // We're part of the group of archers that circles // around after 2*N rounds. To find out where we // will finish after M rounds, we only consider what // happens on target 1. After 2*N rounds have taken // place, we note the next round at which we compete // on target 1 -- we can then easily compute where // we will finish, since for each successive round // we will move to the next target (as we'll be in // the cycle phase). memset(black, 0, sizeof(black)); memset(grey, 0, sizeof(grey)); memset(white, 0, sizeof(white)); // Update the initial p values of the archers -- this is the // minimum number of rounds that it will take an archer to // reach the first target. grey[start >> 1] = 1; for (int i = 1; i < n * 2; i++) { int target = (i - 1 + (i > start ? 1 : 0)) >> 1; if (ranks[i] < rank) black[target]++; else white[target]++; } // Work out the ranks of the first two archers on the first target int archer1, archer2; if (start < 2) { archer1 = ranks[1]; archer2 = rank; } else { archer1 = ranks[1]; archer2 = ranks[2]; } // And convert the ranks into counts of black, grey and white // archers. int s_black = 0, s_grey = 0, s_white = 0; if (archer1 < rank) s_black++; else if (archer1 == rank) s_grey++; else s_white++; if (archer2 < rank) s_black++; else if (archer2 == rank) s_grey++; else s_white++; int cumulative_black = 0, cumulative_grey = 0, cumulative_white = 0; int seen = -1; int bumps = 0; for (int round = 0; round < 3 * n; round++) { // Check if we've seen ourselves on target 1 after // enough rounds have passed. if (round >= 2 * n && (s_grey == 1)) { seen = round; break; } // Determine the colour of the loser of this round int loser; if (s_black > 0) { if (s_black == 2) loser = 0; else if (s_grey == 1) { loser = 1; bumps++; } else loser = 2; } else loser = 2; // We expect the loser to make it back to the first target n // rounds from now at best (if they win all of their matches). int new_p = round + n; if (new_p <= 3 * n) { // We only consider cases below 3n, since that is as far // as we need to simulate. if (loser == 0) { black[new_p]++; s_black--; } else if (loser == 1) { grey[new_p]++; s_grey--; } else { white[new_p]++; s_white--; } } // Now pick an archer to move onto target 1. We add to our // consideration list all of the archers who we thought would // make it by the coming round. cumulative_black += black[round + 1]; cumulative_grey += grey[round + 1]; cumulative_white += white[round + 1]; // Now pick the best archer out of our consideration // list. if (cumulative_black > 0) { s_black++; cumulative_black--; } else if (cumulative_grey > 0) { s_grey++; cumulative_grey--; } else { s_white++; cumulative_white--; } } if (m > seen) bumps++; cache[targ] = make_pair(n - ((m - seen + n - 1) % n), bumps); } else { // We're part of the group of weak archers that // gets stuck on some target after 2*N rounds. We // just need to work out what that target is. // // The idea is that as we simulate the tournament, we can only // end up with at most one weak archer on any target. So to // work out where we end up, we "push" the weaker archers around // the targets. Specifically, we only push ourself (the grey // archer) and all the archers weaker than us (white archers). // Keep track of the number of grey and white archers on each // target. int white[n], grey[n]; memset(white, 0, sizeof(white)); memset(grey, 0, sizeof(grey)); grey[start >> 1] = 1; for (int i = 1; i < 2 * n; i++) if (ranks[i] > rank) white[(i - 1 + (i > start ? 1 : 0)) >> 1]++; // Now we push them around. We start at the first target and follow // the targets that archers would get moved to for losing on each // target, keeping track of how many archers we are pushing around. int shift_white = 0, shift_grey = 0; int bumps = 0; // It should take 2n rounds for the archers to settle. However, we // will only pick up some of the archers towards the end of our first // round, so we run for 3n rounds to accommodate this. for (int it = 0; it < 3; it++) { // Start at the first target int pos = 0; do { // Calculate the total number of archers we have on this // target, including the ones that we've pushed from the // previous target. int cur_white = white[pos] + shift_white; int cur_grey = grey[pos] + shift_grey; // Now leave an archer behind and work out how many we // should push to the next target. if (cur_white + cur_grey > 1) { // More than one grey + white archer, so we must // leave one behind and push the others. if (pos > 0) { // If this is not the first target, then the // grey archer advances, if present, and a // white one stays. white[pos] = 1; shift_white = cur_white - 1; grey[pos] = 0; if (cur_grey > 0) shift_grey = cur_grey; else shift_grey = 0; } else { // If this is the first target, then the grey // one stays (if present) and the white ones // get pushed. if (cur_grey > 0) { grey[pos] = 1; white[pos] = 0; shift_grey = cur_grey - 1; shift_white = cur_white; } else { grey[pos] = 0; white[pos] = 1; shift_grey = 0; shift_white = cur_white - 1; } } } else { // Only one white or grey archer, so either leave // them behind or push them depending on which target // we are on. if (pos > 0) { white[pos] = cur_white; grey[pos] = cur_grey; shift_white = 0; shift_grey = 0; } else { if (cur_grey > 0) bumps++; white[pos] = 0; grey[pos] = 0; shift_white = cur_white; shift_grey = cur_grey; } } // Move onto the next position. if (pos == 0) pos = n - 1; else pos--; } while (pos > 0); } int i; for (i = 0; i < n; i++) if (grey[i] > 0) { cache[targ] = make_pair(i + 1, bumps); break; } // Sanity check assert(i < n && grey[i] > 0); } cached[targ] = 1; return cache[targ]; } /** * Binary search for the best place to start within a given range * of starting positions. This assumes that our ending position will * not wrap as we try different starting positions; see the main * method below for details of how this is used. */ pair<int, int> search(int s, int e) { pair<int, int> start, end, mid; int mi; start = simulate(s * 2 - 1); end = simulate(e * 2 - 1); while ((e - s) > 1) { mi = (s + e) >> 1; mid = simulate(mi * 2 - 1); if (start.first < mid.first) { e = mi; end = mid; } else { s = mi; start = mid; } } if (start.first < end.first) return make_pair(start.first, s); else return make_pair(end.first, e); } int main() { memset(cached, 0, sizeof(cached)); cin >> n >> m; assert(1 <= n && n <= MAX_N); assert(2 * n <= m && m <= MAX_M); // We reduce m to take advantage of the fact that after // 2n rounds, the archers move around in a cyclical pattern. m = 2 * n + (m % n); for (int i = 0; i < n * 2; i++) cin >> ranks[i]; rank = ranks[0]; // We binary search to find the target to start at. To do this, // we may require two searches (one to find the point at which // we wrap around to the next target, and one to then find the // best target). int best_start; pair<int, int> start, end, mid; int s = 1, e = n, mi; start = simulate(s * 2 - 1); end = simulate(e * 2 - 1); if (start.second > end.second) { // There's a wrap. Start by finding the wrapping point. while ((e - s) > 1) { mi = (s + e) >> 1; mid = simulate(mi * 2 - 1); if (mid.second > end.second) { // We've wrapped, and so have gone too far. s = mi; start = mid; } else { // No wrap yet. Better push it a bit further. e = mi; end = mid; } } if (start.second > end.second) mi = e; else mi = s; pair<int, int> start_side = search(1, mi - 1); pair<int, int> end_side = search(mi, n); if (start_side.first < end_side.first) best_start = start_side.second; else best_start = end_side.second; } else { // No wrap, just binary search for the best place to // start. pair<int, int> best = search(1, n); best_start = best.second; } cout << best_start << endl; return 0; }

Compilation message (stderr)

archery.c:1:10: fatal error: iostream: No such file or directory
    1 | #include <iostream>
      |          ^~~~~~~~~~
compilation terminated.