#pragma GCC optimize("Ofast", "unroll-loops")
//#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4")
#ifdef __APPLE__
#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <cstdint>
#include <cstring>
#include <string>
#include <cstdlib>
#include <vector>
#include <bitset>
#include <map>
#include <queue>
#include <ctime>
#include <stack>
#include <set>
#include <list>
#include <random>
#include <deque>
#include <functional>
#include <iomanip>
#include <sstream>
#include <fstream>
#include <complex>
#include <numeric>
#include <cassert>
#include <array>
#include <tuple>
#include <unordered_map>
#include <unordered_set>
#include <thread>
#else
#include <bits/stdc++.h>
#endif
#define all(a) a.begin(),a.end()
#define len(a) (int)(a.size())
#define mp make_pair
#define pb push_back
#define fir first
#define sec second
#define fi first
#define se second
using namespace std;
typedef pair<int, int> pii;
typedef long long ll;
typedef long double ld;
template<typename T>
bool umin(T &a, T b) {
if (b < a) {
a = b;
return true;
}
return false;
}
template<typename T>
bool umax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
#if __APPLE__
#define D for (bool _FLAG = true; _FLAG; _FLAG = false)
#define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl
template<class ...Ts>
auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); }
#else
#define D while (false)
#define LOG(...)
#endif
//mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
const int max_n_st = 2e6 * 4 + 2e5 + 42;
template<typename T>
struct fenw_sum {
T sum[max_n_st];
void _add(int point, T x) {
for(; point < max_n_st; point += (point & -point)) sum[point] += x;
}
void add(int point, T x) {
_add(point + 1, x);
}
T _get(int point) {
T res = 0;
for(; point > 0; point -= (point & -point)) res += sum[point];
return res;
}
T get(int l, int r) {
return _get(r + 1) - _get(l);
}
};
const int max_len = 1e5 + 42;
vector<int> queries[max_len];
const int max_n = 1e5 + 42;
int L[max_n], R[max_n];
int inv[max_n_st];
void solve() {
int n, m;
cin >> n >> m;
string conc;
vector<string> s(n), r(m), q(m);
vector<int> st1(n), st2(m);
vector<pair<int, int> > av;
for(int i = 0; i < n; i++) {
cin >> s[i];
conc += s[i];
st1[i] = len(conc);
conc += s[i];
conc += '.';
av.pb({len(s[i]), st1[i]});
}
sort(all(av)); reverse(all(av));
for(int i = 0; i < m; i++) {
cin >> r[i] >> q[i];
st2[i] = len(conc);
conc += q[i]; conc += r[i];
conc += '.';
queries[len(q[i])].pb(i);
}
auto sufarr = atcoder::suffix_array(conc);
auto lcp = atcoder::lcp_array(conc, sufarr);
reverse(all(lcp)); lcp.pb(0); reverse(all(lcp));
fenw_sum<int> fwsum = {};
vector<pair<int, int> > here;
for(int i = 0; i < len(conc); i++) {
inv[sufarr[i]] = i;
}
for(int i = 0; i < m; i++) here.pb({inv[st2[i]], i});
sort(all(here));
vector<pair<int, int> > st;
st.pb({-1e9, -1});
int here_pos = 0;
for(int i = 0; i < len(conc); i++) {
if(i - 1 >= 0) {
while(!st.empty() && st.back().fi >= lcp[i]) {
st.pop_back();
}
st.push_back({lcp[i], i - 1});
}
st.pb({1e9, i});
if(here_pos < len(here) && here[here_pos].fi == i) {
auto pos = lower_bound(all(st), pair<int, int>{len(r[here[here_pos].se]) + len(q[here[here_pos].se]), -1}) - st.begin() - 1;
L[here[here_pos].se] = st[pos].se + 1;
here_pos++;
}
// cout << lcp[i] << ' ';
}
here_pos = len(here) - 1;
// for(auto& x : lcp) cout << x << ' ';
// cout << '\n';
st.clear();
st.pb({-1e9, len(conc)});
for(int i = len(conc) - 1; i >= 0; i--) {
if(i + 1 < len(conc)) {
while(!st.empty() && st.back().fi >= lcp[i + 1]) {
st.pop_back();
}
st.push_back({lcp[i + 1], i + 1});
}
st.pb({1e9, i});
// for(auto& x : st) cout << x.fi << ' ' << ' ' << x.se << ',';
// cout << '\n';
if(here_pos >= 0 && here[here_pos].fi == i) {
auto pos = lower_bound(all(st), pair<int, int>{len(r[here[here_pos].se]) + len(q[here[here_pos].se]), -1}) - st.begin() - 1;
R[here[here_pos].se] = st[pos].se - 1;
here_pos--;
}
}
for(int i = 0; i < n; i++) fwsum.add(inv[st1[i]], 1);
vector<int> ans(m, -1);
for(int len = 1; len < max_len; len++) {
for(auto& x : av) fwsum.add(inv[x.se - (len - 1)], -1);
while(!av.empty() && av.back().fi < len) av.pop_back();
for(auto& x : av) fwsum.add(inv[x.se - len], 1);
for(auto& curq : queries[len]) {
// cout << curq << ' ' << L[curq] << ' ' << R[curq] << '\n';
ans[curq] = fwsum.get(L[curq], R[curq]);
}
}
for(int i = 0; i < m; i++) cout << ans[i] << '\n';
}
signed main() {
// freopen("input.txt", "r", stdin);
// freopen("output.txt", "w", stdout);
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t = 1;
//cin >> t;
while (t--) solve();
}
/*
KIVI
*/
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
16 ms |
34788 KB |
Output is correct |
2 |
Correct |
15 ms |
34824 KB |
Output is correct |
3 |
Correct |
15 ms |
34836 KB |
Output is correct |
4 |
Correct |
16 ms |
34812 KB |
Output is correct |
5 |
Correct |
15 ms |
34828 KB |
Output is correct |
6 |
Correct |
16 ms |
34816 KB |
Output is correct |
7 |
Correct |
16 ms |
34812 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
1301 ms |
179520 KB |
Output is correct |
2 |
Correct |
1289 ms |
181248 KB |
Output is correct |
3 |
Correct |
1199 ms |
180516 KB |
Output is correct |
4 |
Correct |
1182 ms |
182328 KB |
Output is correct |
5 |
Correct |
948 ms |
128352 KB |
Output is correct |
6 |
Correct |
889 ms |
128992 KB |
Output is correct |
7 |
Correct |
892 ms |
186092 KB |
Output is correct |
8 |
Correct |
1357 ms |
208732 KB |
Output is correct |
9 |
Correct |
1348 ms |
207820 KB |
Output is correct |
10 |
Correct |
745 ms |
153460 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
105 ms |
53008 KB |
Output is correct |
2 |
Correct |
84 ms |
48108 KB |
Output is correct |
3 |
Correct |
94 ms |
50128 KB |
Output is correct |
4 |
Correct |
85 ms |
49488 KB |
Output is correct |
5 |
Correct |
87 ms |
48652 KB |
Output is correct |
6 |
Correct |
93 ms |
50132 KB |
Output is correct |
# |
Verdict |
Execution time |
Memory |
Grader output |
1 |
Correct |
16 ms |
34788 KB |
Output is correct |
2 |
Correct |
15 ms |
34824 KB |
Output is correct |
3 |
Correct |
15 ms |
34836 KB |
Output is correct |
4 |
Correct |
16 ms |
34812 KB |
Output is correct |
5 |
Correct |
15 ms |
34828 KB |
Output is correct |
6 |
Correct |
16 ms |
34816 KB |
Output is correct |
7 |
Correct |
16 ms |
34812 KB |
Output is correct |
8 |
Correct |
1301 ms |
179520 KB |
Output is correct |
9 |
Correct |
1289 ms |
181248 KB |
Output is correct |
10 |
Correct |
1199 ms |
180516 KB |
Output is correct |
11 |
Correct |
1182 ms |
182328 KB |
Output is correct |
12 |
Correct |
948 ms |
128352 KB |
Output is correct |
13 |
Correct |
889 ms |
128992 KB |
Output is correct |
14 |
Correct |
892 ms |
186092 KB |
Output is correct |
15 |
Correct |
1357 ms |
208732 KB |
Output is correct |
16 |
Correct |
1348 ms |
207820 KB |
Output is correct |
17 |
Correct |
745 ms |
153460 KB |
Output is correct |
18 |
Correct |
105 ms |
53008 KB |
Output is correct |
19 |
Correct |
84 ms |
48108 KB |
Output is correct |
20 |
Correct |
94 ms |
50128 KB |
Output is correct |
21 |
Correct |
85 ms |
49488 KB |
Output is correct |
22 |
Correct |
87 ms |
48652 KB |
Output is correct |
23 |
Correct |
93 ms |
50132 KB |
Output is correct |
24 |
Correct |
1236 ms |
185540 KB |
Output is correct |
25 |
Correct |
1255 ms |
189088 KB |
Output is correct |
26 |
Correct |
1219 ms |
181496 KB |
Output is correct |
27 |
Correct |
1210 ms |
183172 KB |
Output is correct |
28 |
Correct |
1427 ms |
209292 KB |
Output is correct |
29 |
Correct |
791 ms |
139520 KB |
Output is correct |