Submission #760881

#TimeUsernameProblemLanguageResultExecution timeMemory
760881Valera_GrinenkoSelling RNA Strands (JOI16_selling_rna)C++17
60 / 100
1552 ms342160 KiB
#pragma GCC optimize("Ofast", "unroll-loops") //#pragma GCC target("sse", "sse2", "sse3", "ssse3", "sse4") #ifdef __APPLE__ #include <iostream> #include <cmath> #include <algorithm> #include <stdio.h> #include <cstdint> #include <cstring> #include <string> #include <cstdlib> #include <vector> #include <bitset> #include <map> #include <queue> #include <ctime> #include <stack> #include <set> #include <list> #include <random> #include <deque> #include <functional> #include <iomanip> #include <sstream> #include <fstream> #include <complex> #include <numeric> #include <cassert> #include <array> #include <tuple> #include <unordered_map> #include <unordered_set> #include <thread> #else #include <bits/stdc++.h> #endif #define all(a) a.begin(),a.end() #define len(a) (int)(a.size()) #define mp make_pair #define pb push_back #define fir first #define sec second #define fi first #define se second using namespace std; typedef pair<int, int> pii; typedef long long ll; typedef long double ld; template<typename T> bool umin(T &a, T b) { if (b < a) { a = b; return true; } return false; } template<typename T> bool umax(T &a, T b) { if (a < b) { a = b; return true; } return false; } #if __APPLE__ #define D for (bool _FLAG = true; _FLAG; _FLAG = false) #define LOG(...) print(#__VA_ARGS__" ::", __VA_ARGS__) << endl template<class ...Ts> auto &print(Ts ...ts) { return ((cerr << ts << " "), ...); } #else #define D while (false) #define LOG(...) #endif //mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); namespace atcoder { namespace internal { std::vector<int> sa_naive(const std::vector<int>& s) { int n = int(s.size()); std::vector<int> sa(n); std::iota(sa.begin(), sa.end(), 0); std::sort(sa.begin(), sa.end(), [&](int l, int r) { if (l == r) return false; while (l < n && r < n) { if (s[l] != s[r]) return s[l] < s[r]; l++; r++; } return l == n; }); return sa; } std::vector<int> sa_doubling(const std::vector<int>& s) { int n = int(s.size()); std::vector<int> sa(n), rnk = s, tmp(n); std::iota(sa.begin(), sa.end(), 0); for (int k = 1; k < n; k *= 2) { auto cmp = [&](int x, int y) { if (rnk[x] != rnk[y]) return rnk[x] < rnk[y]; int rx = x + k < n ? rnk[x + k] : -1; int ry = y + k < n ? rnk[y + k] : -1; return rx < ry; }; std::sort(sa.begin(), sa.end(), cmp); tmp[sa[0]] = 0; for (int i = 1; i < n; i++) { tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0); } std::swap(tmp, rnk); } return sa; } // SA-IS, linear-time suffix array construction // Reference: // G. Nong, S. Zhang, and W. H. Chan, // Two Efficient Algorithms for Linear Time Suffix Array Construction template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40> std::vector<int> sa_is(const std::vector<int>& s, int upper) { int n = int(s.size()); if (n == 0) return {}; if (n == 1) return {0}; if (n == 2) { if (s[0] < s[1]) { return {0, 1}; } else { return {1, 0}; } } if (n < THRESHOLD_NAIVE) { return sa_naive(s); } if (n < THRESHOLD_DOUBLING) { return sa_doubling(s); } std::vector<int> sa(n); std::vector<bool> ls(n); for (int i = n - 2; i >= 0; i--) { ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]); } std::vector<int> sum_l(upper + 1), sum_s(upper + 1); for (int i = 0; i < n; i++) { if (!ls[i]) { sum_s[s[i]]++; } else { sum_l[s[i] + 1]++; } } for (int i = 0; i <= upper; i++) { sum_s[i] += sum_l[i]; if (i < upper) sum_l[i + 1] += sum_s[i]; } auto induce = [&](const std::vector<int>& lms) { std::fill(sa.begin(), sa.end(), -1); std::vector<int> buf(upper + 1); std::copy(sum_s.begin(), sum_s.end(), buf.begin()); for (auto d : lms) { if (d == n) continue; sa[buf[s[d]]++] = d; } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); sa[buf[s[n - 1]]++] = n - 1; for (int i = 0; i < n; i++) { int v = sa[i]; if (v >= 1 && !ls[v - 1]) { sa[buf[s[v - 1]]++] = v - 1; } } std::copy(sum_l.begin(), sum_l.end(), buf.begin()); for (int i = n - 1; i >= 0; i--) { int v = sa[i]; if (v >= 1 && ls[v - 1]) { sa[--buf[s[v - 1] + 1]] = v - 1; } } }; std::vector<int> lms_map(n + 1, -1); int m = 0; for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms_map[i] = m++; } } std::vector<int> lms; lms.reserve(m); for (int i = 1; i < n; i++) { if (!ls[i - 1] && ls[i]) { lms.push_back(i); } } induce(lms); if (m) { std::vector<int> sorted_lms; sorted_lms.reserve(m); for (int v : sa) { if (lms_map[v] != -1) sorted_lms.push_back(v); } std::vector<int> rec_s(m); int rec_upper = 0; rec_s[lms_map[sorted_lms[0]]] = 0; for (int i = 1; i < m; i++) { int l = sorted_lms[i - 1], r = sorted_lms[i]; int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n; int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n; bool same = true; if (end_l - l != end_r - r) { same = false; } else { while (l < end_l) { if (s[l] != s[r]) { break; } l++; r++; } if (l == n || s[l] != s[r]) same = false; } if (!same) rec_upper++; rec_s[lms_map[sorted_lms[i]]] = rec_upper; } auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper); for (int i = 0; i < m; i++) { sorted_lms[i] = lms[rec_sa[i]]; } induce(sorted_lms); } return sa; } } // namespace internal std::vector<int> suffix_array(const std::vector<int>& s, int upper) { assert(0 <= upper); for (int d : s) { assert(0 <= d && d <= upper); } auto sa = internal::sa_is(s, upper); return sa; } template <class T> std::vector<int> suffix_array(const std::vector<T>& s) { int n = int(s.size()); std::vector<int> idx(n); iota(idx.begin(), idx.end(), 0); sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; }); std::vector<int> s2(n); int now = 0; for (int i = 0; i < n; i++) { if (i && s[idx[i - 1]] != s[idx[i]]) now++; s2[idx[i]] = now; } return internal::sa_is(s2, now); } std::vector<int> suffix_array(const std::string& s) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return internal::sa_is(s2, 255); } // Reference: // T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park, // Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its // Applications template <class T> std::vector<int> lcp_array(const std::vector<T>& s, const std::vector<int>& sa) { int n = int(s.size()); assert(n >= 1); std::vector<int> rnk(n); for (int i = 0; i < n; i++) { rnk[sa[i]] = i; } std::vector<int> lcp(n - 1); int h = 0; for (int i = 0; i < n; i++) { if (h > 0) h--; if (rnk[i] == 0) continue; int j = sa[rnk[i] - 1]; for (; j + h < n && i + h < n; h++) { if (s[j + h] != s[i + h]) break; } lcp[rnk[i] - 1] = h; } return lcp; } std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return lcp_array(s2, sa); } // Reference: // D. Gusfield, // Algorithms on Strings, Trees, and Sequences: Computer Science and // Computational Biology template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) { int n = int(s.size()); if (n == 0) return {}; std::vector<int> z(n); z[0] = 0; for (int i = 1, j = 0; i < n; i++) { int& k = z[i]; k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]); while (i + k < n && s[k] == s[i + k]) k++; if (j + z[j] < i + z[i]) j = i; } z[0] = n; return z; } std::vector<int> z_algorithm(const std::string& s) { int n = int(s.size()); std::vector<int> s2(n); for (int i = 0; i < n; i++) { s2[i] = s[i]; } return z_algorithm(s2); } } // namespace atcoder const int max_n_st = 2e6 * 5; template<typename T> struct segment_tree_min { T mn[4 * max_n_st]; void build(int v, int l, int r, vector<T>& a) { if (l == r) { if(l < len(a)) mn[v] = a[l]; else mn[v] = -1; return; } int mid = (l + r) / 2; build(2 * v, l, mid, a); build(2 * v + 1, mid + 1, r, a); mn[v] = min(mn[2 * v], mn[2 * v + 1]); } void update(int v, int l, int r, int pos, T value) { if (l == r) { mn[v] = value; return; } int mid = (l + r) / 2; if (pos <= mid) { update(2 * v, l, mid, pos, value); } else { update(2 * v + 1, mid + 1, r, pos, value); } mn[v] = min(mn[2 * v], mn[2 * v + 1]); } T get_min(int v, int tl, int tr, int l, int r) { if (tl == l && tr == r) { return mn[v]; } int mid = (tl + tr) / 2; if (r <= mid) { return get_min(2 * v, tl, mid, l, r); } else if (l > mid) { return get_min(2 * v + 1, mid + 1, tr, l, r); } return min(get_min(2 * v, tl, mid, l, mid), get_min(2 * v + 1, mid + 1, tr, mid + 1, r)); } }; template<typename T> struct fenw_sum { T sum[max_n_st]; void _add(int point, T x) { for(; point < max_n_st; point += (point & -point)) sum[point] += x; } void add(int point, T x) { _add(point + 1, x); } T _get(int point) { T res = 0; for(; point > 0; point -= (point & -point)) res += sum[point]; return res; } T get(int l, int r) { return _get(r + 1) - _get(l); } }; const int max_len = 1e5 + 42; vector<int> queries[max_len]; void solve() { int n, m; cin >> n >> m; string conc; vector<string> s(n), r(m), q(m); vector<int> st1(n), st2(m); vector<pair<int, int> > av; for(int i = 0; i < n; i++) { cin >> s[i]; conc += s[i]; st1[i] = len(conc); conc += s[i]; conc += '.'; av.pb({len(s[i]), st1[i]}); } sort(all(av)); reverse(all(av)); for(int i = 0; i < m; i++) { cin >> r[i] >> q[i]; st2[i] = len(conc); conc += q[i]; conc += r[i]; conc += '.'; queries[len(q[i])].pb(i); } auto sufarr = atcoder::suffix_array(conc); auto lcp = atcoder::lcp_array(conc, sufarr); reverse(all(lcp)); lcp.pb(0); reverse(all(lcp)); segment_tree_min<int> stmn = {}; stmn.build(1, 0, max_n_st - 1, lcp); fenw_sum<int> fwsum = {}; vector<int> inv(len(conc)); for(int i = 0; i < len(conc); i++) { inv[sufarr[i]] = i; } for(int i = 0; i < n; i++) fwsum.add(inv[st1[i]], 1); vector<int> ans(m, -1); for(int len = 1; len < max_len; len++) { for(auto& x : av) fwsum.add(inv[x.se - (len - 1)], -1); while(!av.empty() && av.back().fi < len) av.pop_back(); for(auto& x : av) fwsum.add(inv[x.se - len], 1); for(auto& curq : queries[len]) { int need = len(r[curq]) + len(q[curq]); int L = -1, R = -1; int lb = 0, rb = inv[st2[curq]]; while(lb < rb) { int mb = (lb + rb) / 2; if(stmn.get_min(1, 0, max_n_st - 1, mb + 1, inv[st2[curq]]) < need) lb = mb + 1; else rb = mb; } L = lb; lb = inv[st2[curq]], rb = len(conc) - 1; while(lb < rb) { int mb = (lb + rb + 1) / 2; if(stmn.get_min(1, 0, max_n_st - 1, inv[st2[curq]] + 1, mb) < need) rb = mb - 1; else lb = mb; } R = lb; // cout << curq << '\n'; // cout << L << ' ' << R << '.' << inv[st2[curq]] << '\n'; ans[curq] = fwsum.get(L, R); } } for(int i = 0; i < m; i++) cout << ans[i] << '\n'; } signed main() { // freopen("input.txt", "r", stdin); // freopen("output.txt", "w", stdout); ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); int t = 1; //cin >> t; while (t--) solve(); } /* KIVI */
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...