This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
/*
Time complexity: O(N^2 2^N) general case (which should pass 1-2)
Subtask 3
This is a rectangle (wow)
So what it looks like is this:
T---T
-T-T-
--T--
-----
--T--
-T-T-
T---T
T--T
-TT-
----
----
-TT-
T--T
We just have to construct this, essentially
Subtask 4
For this one, we go through every x-coordinate and get the
smallest Y and largest Y
Well, we can probably sort the values by Y
and then I can keep a set of encountered Xs
// ! Warning: the set may increase the constant factor
if an X has been encountered, then don't bother with it anymore
Now do the same, but going in reverse order of Y
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
vector<bool> solve16(ll n, const vector<tuple<ll, ll>>& pos) {
vector<ll> xs;
vector<ll> ys;
for(const tuple<ll, ll>& tup : pos) {
ll x, y;
tie(x, y) = tup;
xs.push_back(x);
ys.push_back(y);
}
for(ll i = 0; i < (1 << n); i++) {
vector<bool> third_satisfied(n, false);
ll has_bad_x_coords = false;
for(ll targx : xs) {
/*
TODO count the number of towers with this x
mark the ones in the middle as "satisfied"
*/
ll count_towers = 0ll;
ll min_tower_y = numeric_limits<ll>::max();
ll max_tower_y = numeric_limits<ll>::min();
for(ll j = 0ll; j < n; j++) {
ll x, y;
tie(x, y) = pos[j];
if(x == targx) {
if((i >> j) & 1) {
count_towers++;
third_satisfied[j] = true;
min_tower_y = min(min_tower_y, y);
max_tower_y = max(max_tower_y, y);
}
}
}
if(count_towers > 2ll) {
has_bad_x_coords = true;
break;
}
for(ll j = 0ll; j < n; j++) {
ll x, y;
tie(x, y) = pos[j];
if(x == targx) {
if(min_tower_y <= y && y <= max_tower_y) {
third_satisfied[j] = true;
}
}
}
}
if(has_bad_x_coords) continue;
ll has_bad_y_coords = false;
for(ll targy : ys) {
/*
TODO count the number of towers with this y
mark the ones in the middle as "satisfied"
*/
ll count_towers = 0ll;
ll min_tower_x = numeric_limits<ll>::max();
ll max_tower_x = numeric_limits<ll>::min();
for(ll j = 0ll; j < n; j++) {
ll x, y;
tie(x, y) = pos[j];
if(y == targy) {
if((i >> j) & 1) {
count_towers++;
third_satisfied[j] = true;
min_tower_x = min(min_tower_x, x);
max_tower_x = max(max_tower_x, x);
}
}
}
if(count_towers > 2ll) {
has_bad_y_coords = true;
break;
}
for(ll j = 0ll; j < n; j++) {
ll x, y;
tie(x, y) = pos[j];
if(y == targy) {
if(min_tower_x <= x && x <= max_tower_x) {
third_satisfied[j] = true;
}
}
}
}
if(has_bad_y_coords) continue;
if(all_of(third_satisfied.begin(), third_satisfied.end(), [](bool v) {return v;})) {
vector<bool> ans;
for(ll j = 0ll; j < n; j++) {
ans.push_back((i >> j) & 1);
}
return ans;
}
}
return *(new vector<bool>());
}
vector<bool> solve_subtask_3(ll b, ll a) {
vector<bool> ans;
for(ll i = 0ll; i < b; i++) {
for(ll j = 0ll; j < a; j++) {
ll ni = (i >= (b >> 1) ? b - i - 1ll : i);
ll nj = (j >= (a >> 1) ? a - j - 1ll : j);
ans.push_back(ni == nj);
}
}
return ans;
}
void print_bool_vec(const vector<bool>& vec) {
for(bool v : vec) {
cout << v;
}
cout << endl;
}
bool satisfies_subtask_3(ll n, vector<tuple<ll, ll>> pos) {
ll b, a;
tie(b, a) = pos[n - 1];
// Check if subtask 3
if(a * b != n) return false;
for(ll j = 0ll; j < a; j++) {
for(ll i = 0ll; i < b; i++) {
ll curx, cury;
tie(curx, cury) = pos[i * a + j];
if(curx != i + 1 || cury != j + 1) return false;
}
}
return true;
}
vector<bool> solve_subtask_4(ll n, const vector<tuple<ll, ll>>& pos) {
/*
For this one, we go through every x-coordinate and get the
smallest Y and largest Y
Well, we can probably sort the values by Y
and then I can keep a set of encountered Xs
// ! Warning: the set may increase the constant factor
if an X has been encountered, then don't bother with it anymore
Now do the same, but going in reverse order of Y
*/
vector<tuple<ll, ll, ll>> spos;
vector<bool> ans(n, false);
spos.reserve(n);
for(ll i = 0ll; i < n; i++) {
ll x, y;
tie(x, y) = pos[i];
spos.push_back({x, y, i});
}
// Phase 1: increasing X
unordered_set<ll> ys;
sort(spos.begin(), spos.end(), [](tuple<ll, ll, ll> a, tuple<ll, ll, ll> b) {return get<0>(a) < get<0>(b);});
for(const tuple<ll, ll, ll> cpos : spos) {
if(ys.count(get<1>(cpos)) == 0) {
ans[get<2>(cpos)] = true;
}
ys.insert(get<1>(cpos));
}
// Phase 2: decreasing X
ys.clear();
sort(spos.begin(), spos.end(), [](tuple<ll, ll, ll> a, tuple<ll, ll, ll> b) {return get<0>(a) > get<0>(b);});
for(const tuple<ll, ll, ll> cpos : spos) {
if(ys.count(get<1>(cpos)) == 0) {
ans[get<2>(cpos)] = true;
}
ys.insert(get<1>(cpos));
}
return ans;
}
int main() {
ll n;
cin >> n;
vector<tuple<ll, ll>> pos;
for(ll i = 0ll; i < n; i++) {
ll x, y;
cin >> x >> y;
pos.push_back({x, y});
}
bool subtask3 = satisfies_subtask_3(n, pos);
if(subtask3) {
ll b, a;
tie(b, a) = pos[n - 1];
vector<bool> ans = solve_subtask_3(b, a);
print_bool_vec(ans);
} else if(n <= 16) {
vector<bool> ans = solve16(n, pos);
print_bool_vec(ans);
} else {
// Assume subtask 4
vector<bool> ans = solve_subtask_4(n, pos);
print_bool_vec(ans);
}
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |