Submission #755141

# Submission time Handle Problem Language Result Execution time Memory
755141 2023-06-09T12:43:33 Z boris_mihov Radio Towers (IOI22_towers) C++17
40 / 100
2122 ms 57136 KB
#include <algorithm>
#include <iostream>
#include <numeric>
#include <cassert>
#include <vector>
#include <stack>

typedef long long llong;
const int MAXLOG = 20 + 5;
const int MAXN = 100000 + 10;
const int INF  = 1e9;

int n;
struct MST
{
    std::vector <int> tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].push_back(vals[l]);
            return;
        }

        int mid = (l + r) / 2;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node].reserve(r - l + 1);

        int lPtr = 0, rPtr = 0;
        for (int i = l ; i <= r ; ++i)
        {
            if (lPtr == tree[2*node].size())
            {
                tree[node].push_back(tree[2*node + 1][rPtr++]);
                continue;
            }

            if (rPtr == tree[2*node + 1].size())
            {
                tree[node].push_back(tree[2*node][lPtr++]);
                continue;
            }

            if (tree[2*node][lPtr] < tree[2*node + 1][rPtr])
            {
                tree[node].push_back(tree[2*node][lPtr++]);
            } else
            {
                tree[node].push_back(tree[2*node + 1][rPtr++]);
            }
        }
    }

    int binaryCount(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] <= val) l = mid;
            else r = mid;
        }

        return r;
    }

    int binaryFirst(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] < val) l = mid;
            else r = mid;
        }

        return (r == tree[node].size() ? INF : tree[node][r]);
    }

    int binaryLast(int node, int val)
    {
        int l = -1, r = tree[node].size(), mid;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (tree[node][mid] <= val) l = mid;
            else r = mid;
        }

        return (l == -1 ? 0 : tree[node][l]);
    }

    int queryCount(int l, int r, int node, int queryL, int queryR, int queryValL, int queryValR)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryCount(node, queryValR) - binaryCount(node, queryValL - 1);
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res += queryCount(l, mid, 2*node, queryL, queryR, queryValL, queryValR);
        if (mid + 1 <= queryR) res += queryCount(mid + 1, r, 2*node + 1, queryL, queryR, queryValL, queryValR);
        return res;
    }

    int queryFirst(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryFirst(node, queryVal);
        }

        int res = INF;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::min(res, queryFirst(l, mid, 2*node, queryL, queryR, queryVal));
        if (mid + 1 <= queryR) res = std::min(res, queryFirst(mid + 1, r, 2*node + 1, queryL, queryR, queryVal));
        return res;
    }

    int queryLast(int l, int r, int node, int queryL, int queryR, int queryVal)
    {
        if (queryL <= l && r <= queryR)
        {
            return binaryLast(node, queryVal);
        }

        int res = 0;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = std::max(res, queryLast(l, mid, 2*node, queryL, queryR, queryVal));
        if (mid + 1 <= queryR) res = std::max(res, queryLast(mid + 1, r, 2*node + 1, queryL, queryR, queryVal));
        return res;
    }

    void build(int vals[])
    {
        build(1, n, 1, vals);
    }

    int queryCount(int to, int l, int r)
    {
        return queryCount(1, n, 1, 1, to, l, r);
    }

    int queryFirst(int to, int l)
    {
        return queryFirst(1, n, 1, 1, to, l);
    }

    int queryLast(int to, int r)
    {
        return queryLast(1, n, 1, 1, to, r);
    }
};

MST left, right;
struct SparseMAX
{
    int sparseMAX[MAXLOG][MAXN];
    int vals[MAXN];
    int lg[MAXN];

    int cmp(int x, int y)
    {
        if (vals[x] > vals[y]) return x;
        return y;
    }

    void build(int _vals[])
    {
        for (int i = 1 ; i <= n ; ++i)
        {
            sparseMAX[0][i] = i;
            vals[i] = _vals[i];
        }

        for (int log = 1 ; (1 << log) <= n ; ++log)
        {
            for (int i = 1 ; i + (1 << log) - 1 <= n ; ++i)
            {
                sparseMAX[log][i] = cmp(sparseMAX[log - 1][i], sparseMAX[log - 1][i + (1 << log - 1)]);
            }
        }
    
        for (int i = 1 ; i <= n ; ++i)
        {
            lg[i] = lg[i - 1];
            if ((1 << lg[i] + 1) < i)
            {
                lg[i]++;
            }
        }
    }

    int findMAX(int l, int r)
    {
        int log = lg[r - l + 1];
        return vals[cmp(sparseMAX[log][l], sparseMAX[log][r - (1 << log) + 1])];
    }

    int findIDX(int l, int r)
    {
        int log = lg[r - l + 1];
        return cmp(sparseMAX[log][l], sparseMAX[log][r - (1 << log) + 1]);
    }
};

struct SegmentTree
{
    struct Node
    {
        int max;
        int min;
        int maxDiffL;
        int maxDiffR;
        
        Node()
        {
            max = -1;
        }
    };

    Node combine(Node left, Node right)
    {
        if (left.max == -1)
        {
            return right;
        }

        Node res;
        res.min = std::min(left.min, right.min);
        res.max = std::max(left.max, right.max);
        res.maxDiffL = std::max(left.maxDiffL, right.maxDiffL);
        res.maxDiffR = std::max(left.maxDiffR, right.maxDiffR);
        res.maxDiffL = std::max(res.maxDiffL, right.max - left.min);
        res.maxDiffR = std::max(res.maxDiffR, left.max - right.min);
        return res;
    }

    Node tree[4*MAXN];
    void build(int l, int r, int node, int vals[])
    {
        if (l == r)
        {
            tree[node].min = vals[l];
            tree[node].max = vals[l];
            tree[node].maxDiffL = 0;
            tree[node].maxDiffR = 0;
            return;
        }

        int mid = (l + r) / 2;
        build(l, mid, 2*node, vals);
        build(mid + 1, r, 2*node + 1, vals);
        tree[node] = combine(tree[2*node], tree[2*node + 1]);
    }    

    Node query(int l, int r, int node, int queryL, int queryR)
    {
        if (queryL <= l && r <= queryR)
        {
            return tree[node];
        }

        Node res;
        int mid = (l + r) / 2;
        if (queryL <= mid) res = combine(res, query(l, mid, 2*node, queryL, queryR));
        if (mid + 1 <= queryR) res = combine(res, query(mid + 1, r, 2*node + 1, queryL, queryR));
        return res;
    }

    void build(int vals[])
    {
        build(1, n, 1, vals);
    }

    int queryL(int l, int r)
    {
        return query(1, n, 1, l, r).maxDiffL;
    }

    int queryR(int l, int r)
    {
        return query(1, n, 1, l, r).maxDiffR;
    }
};

int a[MAXN];
int b[MAXN];
int c[MAXN];
int d[MAXN];
int h[MAXN];
int perm[MAXN];
int cost[MAXN];
SparseMAX sparseMAX;
SegmentTree maxDiff;
std::stack <int> st;
std::vector <int> v;
MST tree;

void init(int N, std::vector <int> H) 
{
    n = N;
    for (int i = 1 ; i <= n ; ++i)
    {
        h[i] = H[i - 1];
    }

    sparseMAX.build(h);
    st.push(0);

    for (int i = 1 ; i <= n ; ++i)
    {
        while (h[st.top()] > h[i])
        {
            st.pop();
        }

        a[i] = st.top();
        st.push(i);
    }


    while (!st.empty())
    {
        st.pop();
    }

    st.push(n + 1);
    for (int i = n ; i >= 1 ; --i)
    {
        while (h[st.top()] > h[i])
        {
            st.pop();
        }

        c[i] = st.top();
        st.push(i);
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        if (a[i] == i - 1)
        {
            b[i] = 0;
        } else
        {
            b[i] = sparseMAX.findMAX(a[i] + 1, i - 1) - h[i];
        }

        if (c[i] == i + 1)
        {
            d[i] = 0;
        } else
        {
            d[i] = sparseMAX.findMAX(i + 1, c[i] - 1) - h[i];
        }
    }

    for (int i = 1 ; i <= n ; ++i)
    {
        cost[i] = INF; 
        if (a[i] > 0) cost[i] = std::min(cost[i], b[i]);
        if (c[i] < n + 1) cost[i] = std::min(cost[i], d[i]);
    }

    std::iota(perm + 1, perm + 1 + n, 1);
    std::sort(perm + 1, perm + 1 + n, [&](const int &x, const int &y)
    {
        return cost[x] > cost[y];
    });

    tree.build(perm);
    maxDiff.build(h);
}

int aaa;
int max_towers(int L, int R, int D) 
{
    L++; R++;
    int l = 0, r = n + 1, mid;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (cost[perm[mid]] >= D) l = mid;
        else r = mid;
    }

    if (l == 0)
    {
        return 1;
    }

    int cnt = tree.queryCount(l, L, R);
    if (++aaa == 12)
    {
        return cnt;
    }

    if (cnt == 0)
    {
        l = L;
        r = R;
        while (l < r - 1)
        {
            mid = (l + r) / 2;
            if (maxDiff.queryL(l, mid) >= D && maxDiff.queryR(mid, r) >= D)
            {
                return 2;
            }

            if (maxDiff.queryL(l, mid) >= D) l = mid;
            else r = mid;
        }
        
        return 1;
    }

    int first = tree.queryFirst(l, L);
    int last = tree.queryLast(l, R);

    l = L, r = first;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (sparseMAX.findMAX(mid, first - 1) < h[first] + D) r = mid;
        else l = mid;
    }

    if (maxDiff.queryL(L, l) >= D)
    {
        cnt++;
    }

    l = last, r = R;
    while (l < r - 1)
    {
        mid = (l + r) / 2;
        if (sparseMAX.findMAX(last + 1, mid) < h[last] + D) l = mid;
        else r = mid;
    }

    if (maxDiff.queryR(r, R) >= D)
    {
        cnt++;
    }

    return cnt;
}

Compilation message

towers.cpp: In member function 'void MST::build(int, int, int, int*)':
towers.cpp:33:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   33 |             if (lPtr == tree[2*node].size())
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~
towers.cpp:39:22: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   39 |             if (rPtr == tree[2*node + 1].size())
      |                 ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~
towers.cpp: In member function 'int MST::binaryFirst(int, int)':
towers.cpp:78:19: warning: comparison of integer expressions of different signedness: 'int' and 'std::vector<int>::size_type' {aka 'long unsigned int'} [-Wsign-compare]
   78 |         return (r == tree[node].size() ? INF : tree[node][r]);
      |                 ~~^~~~~~~~~~~~~~~~~~~~
towers.cpp: In member function 'void SparseMAX::build(int*)':
towers.cpp:182:97: warning: suggest parentheses around '-' inside '<<' [-Wparentheses]
  182 |                 sparseMAX[log][i] = cmp(sparseMAX[log - 1][i], sparseMAX[log - 1][i + (1 << log - 1)]);
      |                                                                                             ~~~~^~~
towers.cpp:189:29: warning: suggest parentheses around '+' inside '<<' [-Wparentheses]
  189 |             if ((1 << lg[i] + 1) < i)
      |                       ~~~~~~^~~
# Verdict Execution time Memory Grader output
1 Incorrect 788 ms 47520 KB 12th lines differ - on the 1st token, expected: '2', found: '0'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 18 ms 34896 KB Output is correct
2 Correct 21 ms 35144 KB Output is correct
3 Correct 24 ms 35148 KB Output is correct
4 Correct 23 ms 35152 KB Output is correct
5 Correct 21 ms 35068 KB Output is correct
6 Correct 20 ms 35060 KB Output is correct
7 Correct 18 ms 35144 KB Output is correct
8 Correct 21 ms 35108 KB Output is correct
9 Correct 20 ms 35112 KB Output is correct
10 Correct 22 ms 35152 KB Output is correct
11 Correct 21 ms 35160 KB Output is correct
12 Correct 21 ms 34768 KB Output is correct
13 Correct 20 ms 35152 KB Output is correct
14 Correct 20 ms 35180 KB Output is correct
15 Correct 20 ms 35172 KB Output is correct
16 Correct 22 ms 35080 KB Output is correct
17 Correct 22 ms 35112 KB Output is correct
18 Correct 19 ms 35152 KB Output is correct
19 Correct 20 ms 35172 KB Output is correct
20 Correct 19 ms 35140 KB Output is correct
21 Correct 20 ms 35152 KB Output is correct
22 Correct 19 ms 35152 KB Output is correct
23 Correct 18 ms 35152 KB Output is correct
24 Correct 21 ms 35152 KB Output is correct
25 Correct 19 ms 34888 KB Output is correct
26 Correct 18 ms 35056 KB Output is correct
27 Correct 20 ms 35152 KB Output is correct
28 Correct 20 ms 35128 KB Output is correct
29 Correct 22 ms 35132 KB Output is correct
30 Correct 19 ms 35152 KB Output is correct
31 Correct 18 ms 35152 KB Output is correct
32 Correct 19 ms 35152 KB Output is correct
33 Correct 19 ms 35088 KB Output is correct
34 Correct 19 ms 35152 KB Output is correct
35 Correct 20 ms 35152 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 34896 KB Output is correct
2 Correct 21 ms 35144 KB Output is correct
3 Correct 24 ms 35148 KB Output is correct
4 Correct 23 ms 35152 KB Output is correct
5 Correct 21 ms 35068 KB Output is correct
6 Correct 20 ms 35060 KB Output is correct
7 Correct 18 ms 35144 KB Output is correct
8 Correct 21 ms 35108 KB Output is correct
9 Correct 20 ms 35112 KB Output is correct
10 Correct 22 ms 35152 KB Output is correct
11 Correct 21 ms 35160 KB Output is correct
12 Correct 21 ms 34768 KB Output is correct
13 Correct 20 ms 35152 KB Output is correct
14 Correct 20 ms 35180 KB Output is correct
15 Correct 20 ms 35172 KB Output is correct
16 Correct 22 ms 35080 KB Output is correct
17 Correct 22 ms 35112 KB Output is correct
18 Correct 19 ms 35152 KB Output is correct
19 Correct 20 ms 35172 KB Output is correct
20 Correct 19 ms 35140 KB Output is correct
21 Correct 20 ms 35152 KB Output is correct
22 Correct 19 ms 35152 KB Output is correct
23 Correct 18 ms 35152 KB Output is correct
24 Correct 21 ms 35152 KB Output is correct
25 Correct 19 ms 34888 KB Output is correct
26 Correct 18 ms 35056 KB Output is correct
27 Correct 20 ms 35152 KB Output is correct
28 Correct 20 ms 35128 KB Output is correct
29 Correct 22 ms 35132 KB Output is correct
30 Correct 19 ms 35152 KB Output is correct
31 Correct 18 ms 35152 KB Output is correct
32 Correct 19 ms 35152 KB Output is correct
33 Correct 19 ms 35088 KB Output is correct
34 Correct 19 ms 35152 KB Output is correct
35 Correct 20 ms 35152 KB Output is correct
36 Correct 55 ms 48824 KB Output is correct
37 Correct 70 ms 56644 KB Output is correct
38 Correct 84 ms 56764 KB Output is correct
39 Correct 74 ms 56648 KB Output is correct
40 Correct 74 ms 56632 KB Output is correct
41 Correct 70 ms 56612 KB Output is correct
42 Correct 84 ms 56628 KB Output is correct
43 Correct 70 ms 56656 KB Output is correct
44 Correct 81 ms 57032 KB Output is correct
45 Correct 68 ms 56684 KB Output is correct
46 Correct 64 ms 56908 KB Output is correct
47 Correct 73 ms 56636 KB Output is correct
48 Correct 80 ms 56620 KB Output is correct
49 Correct 82 ms 56608 KB Output is correct
50 Correct 79 ms 57016 KB Output is correct
51 Correct 65 ms 56632 KB Output is correct
52 Correct 69 ms 56636 KB Output is correct
53 Correct 73 ms 56620 KB Output is correct
54 Correct 71 ms 56692 KB Output is correct
55 Correct 78 ms 57112 KB Output is correct
56 Correct 84 ms 56764 KB Output is correct
57 Correct 71 ms 56004 KB Output is correct
58 Correct 69 ms 56672 KB Output is correct
59 Correct 70 ms 56616 KB Output is correct
60 Correct 80 ms 56644 KB Output is correct
61 Correct 72 ms 56616 KB Output is correct
62 Correct 77 ms 56612 KB Output is correct
63 Correct 91 ms 56632 KB Output is correct
64 Correct 76 ms 56716 KB Output is correct
65 Correct 60 ms 57012 KB Output is correct
66 Correct 76 ms 56792 KB Output is correct
67 Correct 61 ms 57016 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 943 ms 56488 KB Output is correct
2 Correct 1379 ms 56656 KB Output is correct
3 Correct 1373 ms 56616 KB Output is correct
4 Correct 1077 ms 56640 KB Output is correct
5 Correct 1069 ms 56716 KB Output is correct
6 Correct 976 ms 56632 KB Output is correct
7 Correct 1200 ms 56700 KB Output is correct
8 Incorrect 2122 ms 56600 KB 12th lines differ - on the 1st token, expected: '1', found: '0'
9 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 272 ms 39700 KB Output is correct
2 Correct 1108 ms 56640 KB Output is correct
3 Correct 993 ms 56652 KB Output is correct
4 Correct 1408 ms 56676 KB Output is correct
5 Correct 1205 ms 56628 KB Output is correct
6 Correct 1294 ms 56628 KB Output is correct
7 Correct 1119 ms 56700 KB Output is correct
8 Correct 1168 ms 56652 KB Output is correct
9 Correct 1249 ms 57060 KB Output is correct
10 Correct 1067 ms 56636 KB Output is correct
11 Correct 1061 ms 56796 KB Output is correct
12 Correct 100 ms 56676 KB Output is correct
13 Correct 83 ms 56764 KB Output is correct
14 Correct 100 ms 56680 KB Output is correct
15 Correct 84 ms 57136 KB Output is correct
16 Correct 72 ms 56648 KB Output is correct
17 Correct 94 ms 56012 KB Output is correct
18 Correct 86 ms 56672 KB Output is correct
19 Correct 81 ms 56688 KB Output is correct
20 Correct 97 ms 56624 KB Output is correct
21 Correct 85 ms 56680 KB Output is correct
22 Correct 79 ms 56616 KB Output is correct
23 Correct 99 ms 56644 KB Output is correct
24 Correct 68 ms 56612 KB Output is correct
25 Correct 66 ms 57032 KB Output is correct
26 Correct 91 ms 56704 KB Output is correct
27 Correct 91 ms 57012 KB Output is correct
28 Correct 24 ms 35064 KB Output is correct
29 Correct 21 ms 35152 KB Output is correct
30 Correct 21 ms 35128 KB Output is correct
31 Correct 24 ms 35180 KB Output is correct
32 Correct 24 ms 35152 KB Output is correct
33 Correct 21 ms 34896 KB Output is correct
34 Correct 19 ms 35092 KB Output is correct
35 Correct 19 ms 35152 KB Output is correct
36 Correct 21 ms 35152 KB Output is correct
37 Correct 20 ms 35152 KB Output is correct
38 Correct 23 ms 35092 KB Output is correct
39 Correct 20 ms 35124 KB Output is correct
40 Correct 20 ms 35152 KB Output is correct
41 Correct 20 ms 35152 KB Output is correct
42 Correct 25 ms 35076 KB Output is correct
43 Correct 18 ms 35144 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 34896 KB Output is correct
2 Correct 21 ms 35144 KB Output is correct
3 Correct 24 ms 35148 KB Output is correct
4 Correct 23 ms 35152 KB Output is correct
5 Correct 21 ms 35068 KB Output is correct
6 Correct 20 ms 35060 KB Output is correct
7 Correct 18 ms 35144 KB Output is correct
8 Correct 21 ms 35108 KB Output is correct
9 Correct 20 ms 35112 KB Output is correct
10 Correct 22 ms 35152 KB Output is correct
11 Correct 21 ms 35160 KB Output is correct
12 Correct 21 ms 34768 KB Output is correct
13 Correct 20 ms 35152 KB Output is correct
14 Correct 20 ms 35180 KB Output is correct
15 Correct 20 ms 35172 KB Output is correct
16 Correct 22 ms 35080 KB Output is correct
17 Correct 22 ms 35112 KB Output is correct
18 Correct 19 ms 35152 KB Output is correct
19 Correct 20 ms 35172 KB Output is correct
20 Correct 19 ms 35140 KB Output is correct
21 Correct 20 ms 35152 KB Output is correct
22 Correct 19 ms 35152 KB Output is correct
23 Correct 18 ms 35152 KB Output is correct
24 Correct 21 ms 35152 KB Output is correct
25 Correct 19 ms 34888 KB Output is correct
26 Correct 18 ms 35056 KB Output is correct
27 Correct 20 ms 35152 KB Output is correct
28 Correct 20 ms 35128 KB Output is correct
29 Correct 22 ms 35132 KB Output is correct
30 Correct 19 ms 35152 KB Output is correct
31 Correct 18 ms 35152 KB Output is correct
32 Correct 19 ms 35152 KB Output is correct
33 Correct 19 ms 35088 KB Output is correct
34 Correct 19 ms 35152 KB Output is correct
35 Correct 20 ms 35152 KB Output is correct
36 Correct 55 ms 48824 KB Output is correct
37 Correct 70 ms 56644 KB Output is correct
38 Correct 84 ms 56764 KB Output is correct
39 Correct 74 ms 56648 KB Output is correct
40 Correct 74 ms 56632 KB Output is correct
41 Correct 70 ms 56612 KB Output is correct
42 Correct 84 ms 56628 KB Output is correct
43 Correct 70 ms 56656 KB Output is correct
44 Correct 81 ms 57032 KB Output is correct
45 Correct 68 ms 56684 KB Output is correct
46 Correct 64 ms 56908 KB Output is correct
47 Correct 73 ms 56636 KB Output is correct
48 Correct 80 ms 56620 KB Output is correct
49 Correct 82 ms 56608 KB Output is correct
50 Correct 79 ms 57016 KB Output is correct
51 Correct 65 ms 56632 KB Output is correct
52 Correct 69 ms 56636 KB Output is correct
53 Correct 73 ms 56620 KB Output is correct
54 Correct 71 ms 56692 KB Output is correct
55 Correct 78 ms 57112 KB Output is correct
56 Correct 84 ms 56764 KB Output is correct
57 Correct 71 ms 56004 KB Output is correct
58 Correct 69 ms 56672 KB Output is correct
59 Correct 70 ms 56616 KB Output is correct
60 Correct 80 ms 56644 KB Output is correct
61 Correct 72 ms 56616 KB Output is correct
62 Correct 77 ms 56612 KB Output is correct
63 Correct 91 ms 56632 KB Output is correct
64 Correct 76 ms 56716 KB Output is correct
65 Correct 60 ms 57012 KB Output is correct
66 Correct 76 ms 56792 KB Output is correct
67 Correct 61 ms 57016 KB Output is correct
68 Correct 943 ms 56488 KB Output is correct
69 Correct 1379 ms 56656 KB Output is correct
70 Correct 1373 ms 56616 KB Output is correct
71 Correct 1077 ms 56640 KB Output is correct
72 Correct 1069 ms 56716 KB Output is correct
73 Correct 976 ms 56632 KB Output is correct
74 Correct 1200 ms 56700 KB Output is correct
75 Incorrect 2122 ms 56600 KB 12th lines differ - on the 1st token, expected: '1', found: '0'
76 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 788 ms 47520 KB 12th lines differ - on the 1st token, expected: '2', found: '0'
2 Halted 0 ms 0 KB -