Submission #75406

# Submission time Handle Problem Language Result Execution time Memory
75406 2018-09-09T15:29:13 Z born2rule Duathlon (APIO18_duathlon) C++14
31 / 100
399 ms 177800 KB
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
using namespace __gnu_pbds;

#define ll long long
#define db long double
#define ii pair<int,int>
#define vi vector<int>
#define fi first
#define se second
#define sz(a) (int)(a).size()
#define all(a) (a).begin(),(a).end()
#define pb push_back
#define mp make_pair
#define FN(i, n) for (int i = 0; i < (int)(n); ++i)
#define FEN(i,n) for (int i = 1;i <= (int)(n); ++i)
#define rep(i,a,b) for(int i=a;i<b;i++)
#define repv(i,a,b) for(int i=b-1;i>=a;i--)
#define SET(A, val) memset(A, val, sizeof(A))
typedef tree<int ,null_type,less<int>,rb_tree_tag,tree_order_statistics_node_update>ordered_set ;
// order_of_key (val): returns the no. of values less than val
// find_by_order (k): returns the kth largest element.(0-based)
#define TRACE
#ifdef TRACE
#define trace(...) __f(#__VA_ARGS__, __VA_ARGS__)
template <typename Arg1>
void __f(const char* name, Arg1&& arg1){
  cerr << name << " : " << arg1 << std::endl;
}
template <typename Arg1, typename... Args>
void __f(const char* names, Arg1&& arg1, Args&&... args){
  const char* comma = strchr(names + 1, ','); cerr.write(names, comma - names) << " : " << arg1<<" | ";__f(comma+1, args...);
}
#else
#define trace(...)
#endif
const int N=100005;
vi v[N];
bool vis[N];
ll ans;
int n,m;
//for subtask 1,2
bool mark[N];
//for subtask 4,5
ll sumd[N]; int d[N],child[N];
bool checksub12()
{
  if(n>50) return false;
  function<void (int,int,int,vi&) > dfs = [&](int u,int s,int f,vi &tmp)->void
    {
      if(u==f)
	{
	  for(int x:tmp) mark[x]=true;
	  return;
	}
      vis[u]=true;
      tmp.pb(u);
      for(int v1:v[u]) if(!vis[v1]) dfs(v1,s,f,tmp);
      tmp.pop_back();
      vis[u]=false;
    };
  rep(i,1,n+1)
    rep(j,i+1,n+1)
    {
      rep(k,1,n+1) mark[k]=false;
      vi tmp;
      dfs(i,i,j,tmp);
      rep(k,1,n+1)
	if(k!=i && k!=j && mark[k]) ans+=2;
    }
  cout<<ans<<endl;
  return true;
}
bool checksub3()
{
  bool sub3=true;
  rep(i,1,n+1) if(sz(v[i])>2) sub3=false;
  if(!sub3) return false;
  function<void (int, vi&)> dfs = [&](int u,vi &tmp)->void
    {
      vis[u]=true; tmp.pb(u);
      for(int v1:v[u]) if(!vis[v1]) dfs(v1,tmp);
    };
  memset(vis,false,sizeof(vis));
  rep(i,1,n+1)
    {
      if(vis[i]) continue;
      vi tmp;
      dfs(i,tmp);
      bool chain=false;
      for(int x:tmp) if(sz(v[x])==1) chain=true;
      int tot=sz(tmp);
      if(!chain) ans+=(ll)(tot-2)*(ll)tot*(tot-1);
      else rep(j,1,tot-1) ans+=((ll)j*(j+1));
    }
  cout<<ans<<endl;
  return true;
}
bool checksub45()
{
  function<bool (int, int)> dfs = [&](int u,int par)->bool
    {
      child[u]=1;
      vis[u]=true;
      for(int v1:v[u])
	{
	  if(v1==par) continue;
	  if(vis[v1]) return false;
	  d[v1]=d[u]+1;
	  dfs(v1,u);
	  child[u]+=child[v1];
	}
      return true;
    };
  function<void (int, int)> dfs2 = [&](int u,int par)->void
    {
      vis[u]=true;
      for(int v1:v[u])
	{
	  if(v1==par) continue;
	  dfs2(v1,u);
	  sumd[u]+=sumd[v1];
	}
      for(int v1:v[u])
	{
	  if(v1==par) continue;
	  ans+=(ll)(child[u]-child[v1]-1)*(ll)sumd[v1];
	  ans+=(ll)child[v1]*(ll)(sumd[u]-sumd[v1]);
	  ans-=(ll)child[v1]*(child[u]-(ll)child[v1]-1)*(ll)(d[u]*2+1);
	}
      ans+=(ll)(sumd[u]-(ll)(child[u]-1)*(ll)(d[u]+1))*(ll)2;
      sumd[u]+=d[u];
    };
  rep(i,1,n+1)
    {
      if(vis[i]) continue;
      if(!dfs(i,-1)) return false;
    }
  memset(vis,false,sizeof(vis));
  rep(i,1,n+1)
    {
      if(vis[i]) continue;
      dfs2(i,-1);
    }
  cout<<ans<<endl;
  return true;
}
namespace bt//bridge tree
{
  const int N=200005;
  vi v[N],tree[N],nodes[N];
  int a[N],b[N],low[N],st[N],d[N],timer,cno=1,child[N],child2[N];
  ll sumd[N],sumd2[N];
  bool bridge[N],vis[N],mark[N];
  queue<int> Q[N];
  ll ans=0;
  void findbridges(int u,int par=-1)
  {
    vis[u]=true;
    low[u]=st[u]=timer++;
    for(int ind:v[u])
      {
	if(ind==par) continue;
	int v1=(a[ind]^b[ind]^u);
	if(vis[v1]) low[u]=min(low[u],st[v1]);
	else
	  {
	    findbridges(v1,ind);
	    low[u]=min(low[u],low[v1]);
	    if(low[v1]>st[u])
	      bridge[ind]=true;
	  }
      }
  }
  void dfs(int u)
  {
    int curr=cno;
    Q[curr].push(u);
    nodes[curr].pb(u);
    vis[u]=true;
    while(!Q[curr].empty())
      {
	u=Q[curr].front();
	Q[curr].pop();
	for(int ind:v[u])
	  {
	    if(mark[ind]) continue;
	    int v1=(a[ind]^b[ind]^u);
	    mark[ind]=true;
	    if(vis[v1])
	      continue;
	    if(bridge[ind])
	      {
		cno++;
		tree[curr].pb(cno);
		tree[cno].pb(curr);
		dfs(v1);
	      }
	    else
	      {
		Q[curr].push(v1);
		nodes[curr].pb(v1);
		vis[v1]=true;
	      }
	  }
      }
  }
  void dfstree(int u)
  {
    child[u]=sz(nodes[u]);
    child2[u]=1;
    d[u]+=sz(nodes[u]);
    vis[u]=true;
    for(int v1:tree[u])
      {
	if(vis[v1]) continue;
	d[v1]+=d[u];
	dfstree(v1);
	child[u]+=child[v1];
	child2[u]+=child2[v1];
      }
  }
  void dfstree2(int u,int par=-1)
  {
    vis[u]=true;
    for(int v1:tree[u])
      {
	if(vis[v1]) continue;
	dfstree2(v1,u);
	sumd[u]+=sumd[v1];
	sumd2[u]+=sumd2[v1];
      }
    int sz=sz(nodes[u]);
    for(int v1:tree[u])
      {
	if(v1==par) continue;
	ans+=(ll)(child[u]-child[v1]-sz)*(ll)sumd[v1];
	ans+=(ll)child[v1]*(ll)(sumd[u]-sumd[v1]);
	ans-=(ll)child[v1]*(child[u]-(ll)child[v1]-sz)*(ll)(d[u]*2+2-sz);
	//remove answer for corner points
	ans-=(ll)(child[u]-child[v1]-sz)*sumd2[v1];
	ans-=(ll)child2[v1]*(ll)(sumd[u]-sumd[v1]);
	ans+=(ll)child2[v1]*(child[u]-(ll)child[v1]-sz)*(ll)(d[u]*2+2-sz);
	//add answer when v1's corner point,but not on other
	ans+=(ll)(child[u]-child[v1]-sz-(child2[u]-child2[v1]-1))*(ll)(sumd2[v1]-child[v1]);
	ans+=(ll)child2[v1]*(ll)(sumd[u]-sumd[v1]-(sumd2[u]-sumd2[v1]));
	ans-=(ll)child2[v1]*(ll)(child[u]-child[v1]-sz-(child2[u]-child2[v1]-1))*(ll)(d[u]*2+1-sz);
	//add answer when both corner points
	ans+=(ll)(child2[u]-child2[v1]-1)*(ll)(sumd2[v1]-child[v1]);
	ans+=(ll)child2[v1]*(ll)(sumd2[u]-sumd2[v1]-(child[u]-child[v1]-sz));
	ans-=(ll)child2[v1]*(ll)(child2[u]-child2[v1]-1)*(ll)(d[u]*2-sz);
      }
    //trace(u,ans,"dasDSa");
    ll tmp=0;
    //add answer for root
    tmp+=(ll)sz*sumd[u];
    tmp-=((ll)(child[u]-sz)*(ll)sz*(ll)(d[u]+2-sz));
    //if(u==2) trace(tmp);
    //remove answer for corner point
    tmp-=sz*sumd2[u];
    tmp+=((ll)(child2[u]-1)*(ll)sz*(ll)(d[u]+2-sz));
    //if(u==2) trace(tmp);
    //add answer when v1's corner point,but not on other
    tmp+=(ll)(sz-1)*(sumd2[u]-(child[u]-sz));
    tmp-=((ll)(child2[u]-1)*(ll)(sz-1)*(ll)(d[u]+1-sz));
    //if(u==2) trace(tmp);
    //add answer when both corner points
    tmp+=(sumd2[u]-(child[u]-sz));
    tmp-=((ll)(child2[u]-1)*(ll)d[u]);
    //if(u==2) trace(tmp,sumd2[u],child[u],child2[u]);
    ans+=tmp*(ll)2;
    //add answer for within the node
    ans+=(ll)sz*(ll)(sz-1)*(ll)(sz-2);
    //trace(u,ans);
    sumd[u]+=(ll)d[u]*sz;
    sumd2[u]+=d[u];
  }
};
int main()
{
  std::ios::sync_with_stdio(false);
  cin.tie(NULL) ; cout.tie(NULL) ;
  cin>>n>>m;
  rep(i,1,m+1)
    {
      int x,y;
      cin>>x>>y;
      v[x].pb(y); v[y].pb(x);
      bt::a[i]=x; bt::b[i]=y;
      bt::v[x].pb(i); bt::v[y].pb(i);
    }
  //if(checksub12()) return 0;//brute
  //if(checksub45()) return 0;// a tree
  //if(checksub3()) return 0; //degree at most 2
  rep(i,1,n+1)
    {
      if(bt::vis[i]) continue;
      bt::findbridges(i);
    }
  rep(i,1,n+1) bt::vis[i]=false;
  bt::cno=0;
  rep(i,1,n+1)
    {
      if(bt::vis[i]) continue;
      ++bt::cno;
      bt::dfs(i);
    }
  rep(i,1,n+1) bt::vis[i]=false;
  rep(i,1,n+1)
    {
      if(bt::vis[i]) continue;
      bt::dfstree(i);
    }
  rep(i,1,n+1) bt::vis[i]=false;
  rep(i,1,bt::cno+1)
    {
      if(bt::vis[i]) continue;
      bt::dfstree2(i);
    }
  cout<<bt::ans<<endl;
  return 0 ;
}
# Verdict Execution time Memory Grader output
1 Correct 143 ms 151416 KB Output is correct
2 Correct 149 ms 151712 KB Output is correct
3 Correct 148 ms 151764 KB Output is correct
4 Correct 152 ms 151764 KB Output is correct
5 Correct 152 ms 151764 KB Output is correct
6 Correct 155 ms 151764 KB Output is correct
7 Incorrect 150 ms 151764 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 143 ms 151416 KB Output is correct
2 Correct 149 ms 151712 KB Output is correct
3 Correct 148 ms 151764 KB Output is correct
4 Correct 152 ms 151764 KB Output is correct
5 Correct 152 ms 151764 KB Output is correct
6 Correct 155 ms 151764 KB Output is correct
7 Incorrect 150 ms 151764 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 311 ms 169272 KB Output is correct
2 Correct 297 ms 169272 KB Output is correct
3 Correct 343 ms 171656 KB Output is correct
4 Correct 336 ms 171656 KB Output is correct
5 Correct 322 ms 171656 KB Output is correct
6 Correct 357 ms 171656 KB Output is correct
7 Correct 341 ms 171656 KB Output is correct
8 Correct 395 ms 171656 KB Output is correct
9 Correct 365 ms 171656 KB Output is correct
10 Correct 323 ms 171656 KB Output is correct
11 Correct 307 ms 171656 KB Output is correct
12 Correct 316 ms 171656 KB Output is correct
13 Correct 285 ms 171656 KB Output is correct
14 Correct 287 ms 171656 KB Output is correct
15 Correct 303 ms 171656 KB Output is correct
16 Correct 259 ms 171656 KB Output is correct
17 Correct 179 ms 171656 KB Output is correct
18 Correct 192 ms 171656 KB Output is correct
19 Correct 174 ms 171656 KB Output is correct
20 Correct 174 ms 171656 KB Output is correct
21 Correct 168 ms 171656 KB Output is correct
22 Correct 176 ms 171656 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 150 ms 171656 KB Output is correct
2 Correct 143 ms 171656 KB Output is correct
3 Correct 151 ms 171656 KB Output is correct
4 Correct 160 ms 171656 KB Output is correct
5 Correct 154 ms 171656 KB Output is correct
6 Correct 151 ms 171656 KB Output is correct
7 Correct 146 ms 171656 KB Output is correct
8 Correct 150 ms 171656 KB Output is correct
9 Correct 146 ms 171656 KB Output is correct
10 Correct 146 ms 171656 KB Output is correct
11 Correct 147 ms 171656 KB Output is correct
12 Correct 153 ms 171656 KB Output is correct
13 Correct 144 ms 171656 KB Output is correct
14 Correct 154 ms 171656 KB Output is correct
15 Correct 150 ms 171656 KB Output is correct
16 Correct 151 ms 171656 KB Output is correct
17 Correct 148 ms 171656 KB Output is correct
18 Correct 154 ms 171656 KB Output is correct
19 Correct 144 ms 171656 KB Output is correct
20 Correct 149 ms 171656 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 311 ms 171656 KB Output is correct
2 Correct 323 ms 171656 KB Output is correct
3 Correct 323 ms 171656 KB Output is correct
4 Correct 311 ms 171656 KB Output is correct
5 Correct 312 ms 171656 KB Output is correct
6 Correct 335 ms 177800 KB Output is correct
7 Correct 355 ms 177800 KB Output is correct
8 Correct 370 ms 177800 KB Output is correct
9 Correct 344 ms 177800 KB Output is correct
10 Correct 326 ms 177800 KB Output is correct
11 Correct 326 ms 177800 KB Output is correct
12 Correct 353 ms 177800 KB Output is correct
13 Correct 335 ms 177800 KB Output is correct
14 Correct 303 ms 177800 KB Output is correct
15 Correct 322 ms 177800 KB Output is correct
16 Correct 292 ms 177800 KB Output is correct
17 Correct 265 ms 177800 KB Output is correct
18 Correct 271 ms 177800 KB Output is correct
19 Correct 299 ms 177800 KB Output is correct
20 Correct 311 ms 177800 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 147 ms 177800 KB Output is correct
2 Correct 157 ms 177800 KB Output is correct
3 Incorrect 156 ms 177800 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 369 ms 177800 KB Output is correct
2 Correct 342 ms 177800 KB Output is correct
3 Incorrect 399 ms 177800 KB Output isn't correct
4 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 143 ms 151416 KB Output is correct
2 Correct 149 ms 151712 KB Output is correct
3 Correct 148 ms 151764 KB Output is correct
4 Correct 152 ms 151764 KB Output is correct
5 Correct 152 ms 151764 KB Output is correct
6 Correct 155 ms 151764 KB Output is correct
7 Incorrect 150 ms 151764 KB Output isn't correct
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 143 ms 151416 KB Output is correct
2 Correct 149 ms 151712 KB Output is correct
3 Correct 148 ms 151764 KB Output is correct
4 Correct 152 ms 151764 KB Output is correct
5 Correct 152 ms 151764 KB Output is correct
6 Correct 155 ms 151764 KB Output is correct
7 Incorrect 150 ms 151764 KB Output isn't correct
8 Halted 0 ms 0 KB -