Submission #753056

# Submission time Handle Problem Language Result Execution time Memory
753056 2023-06-04T14:01:06 Z I_love_Hoang_Yen Sequence (APIO23_sequence) C++17
31 / 100
2000 ms 61292 KB
#include "sequence.h"
#include <bits/stdc++.h>
#define SZ(s) ((int) ((s).size()))
using namespace std;
 
bool is_sub_3(const std::vector<int> a) {
    auto mit = max_element(a.begin(), a.end());
    return std::is_sorted(a.begin(), mit)
        && std::is_sorted(mit, a.end(), std::greater<int>());
}
 
int len(const std::pair<int,int>& p) {
    return p.second - p.first + 1;
}
bool can_be_median(int cnt_less, int cnt_equal, int cnt_greater) {
    return cnt_equal + cnt_less >= cnt_greater;
}
 
int sub3(const vector<int>& a) {
    int n = SZ(a);
    unordered_map<int, vector<pair<int,int>>> pos;
    int l = 0;
    while (l < n) {
        int r = l;
        while (r < n && a[l] == a[r]) ++r;
        pos[a[l]].emplace_back(l, r-1);
        l = r;
    }
    int res = 0;
    for (const auto& [val, lrs] : pos) {
        // only 1 segment
        for (const auto& lr : lrs) res = max(res, len(lr));
 
        // 2 segments
        if (SZ(lrs) < 2) continue;
        assert(SZ(lrs) == 2);
        int cnt_equal = len(lrs[0]) + len(lrs[1]);
        int cnt_greater = len({lrs[0].second + 1, lrs[1].first - 1});
        int cnt_less = len({0, lrs[0].first - 1}) + len({lrs[1].second + 1, n-1});
        if (can_be_median(cnt_less, cnt_equal, cnt_greater)) {
            res = max(res, cnt_equal);
        }
    }
    return res;
}
 
// SegTree, copied from AtCoder library {{{
// AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html
//
// Notes:
// - Index of elements from 0 -> n-1
// - Range queries are [l, r-1]
//
// Tested:
// - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j
// - https://oj.vnoi.info/problem/gss
// - https://oj.vnoi.info/problem/nklineup
// - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr
// - https://judge.yosupo.jp/problem/point_add_range_sum
// - https://judge.yosupo.jp/problem/point_set_range_composite
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}
 
template<
    class T,  // data type for nodes
    T (*op) (T, T),  // operator to combine 2 nodes
    T (*e)() // identity element
>
struct SegTree {
    SegTree() : SegTree(0) {}
    explicit SegTree(int n) : SegTree(vector<T> (n, e())) {}
    explicit SegTree(const vector<T>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1<<log;
        d = vector<T> (2*size, e());
 
        for (int i = 0; i < _n; i++) d[size+i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }
 
    // 0 <= p < n
    void set(int p, T x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }
 
    // 0 <= p < n
    T get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }
 
    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        T sml = e(), smr = e();
        l += size;
        r += size;
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }
 
    T all_prod() const {
        return d[1];
    }
 
    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*f)(T)> int max_right(int l) const {
        return max_right(l, [](T x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        T sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }
 
    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*f)(T)> int min_left(int r) const {
        return min_left(r, [](T x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        T sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }
 
private:
    int _n, size, log;
    vector<T> d;
 
    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
};
// }}}
// SegTree examples {{{
// Examples: Commonly used SegTree ops: max / min / sum
struct MaxSegTreeOp {
    static int op(int x, int y) {
        return max(x, y);
    }
    static int e() {
        return INT_MIN;
    }
};
 
struct MinSegTreeOp {
    static int op(int x, int y) {
        return min(x, y);
    }
    static int e() {
        return INT_MAX;
    }
};
 
struct SumSegTreeOp {
    static long long op(long long x, long long y) {
        return x + y;
    }
    static long long e() {
        return 0;
    }
};
 
// using STMax = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>;
// using STMin = SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e>;
// using STSum = SegTree<int, SumSegTreeOp::op, SumSegTreeOp::e>;
// }}}
// Lazy Segment Tree, copied from AtCoder {{{
// Source: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Doc: https://atcoder.github.io/ac-library/master/document_en/lazysegtree.html
//
// Notes:
// - Index of elements from 0
// - Range queries are [l, r-1]
// - composition(f, g) should return f(g())
//
// Tested:
// - https://oj.vnoi.info/problem/qmax2
// - https://oj.vnoi.info/problem/lites
// - (range set, add, mult, sum) https://oj.vnoi.info/problem/segtree_itmix
// - (range add (i-L)*A + B, sum) https://oj.vnoi.info/problem/segtree_itladder
// - https://atcoder.jp/contests/practice2/tasks/practice2_l
// - https://judge.yosupo.jp/problem/range_affine_range_sum

template<
    class S,                 // node data type
    S (*op) (S, S),          // combine 2 nodes
    S (*e) (),               // identity element
    class F,                 // lazy propagation tag
    S (*mapping) (F, S),     // apply tag F on a node
    F (*composition) (F, F), // combine 2 tags
    F (*id)()                // identity tag
>
struct LazySegTree {
    LazySegTree() : LazySegTree(0) {}
    explicit LazySegTree(int n) : LazySegTree(vector<S>(n, e())) {}
    explicit LazySegTree(const vector<S>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    S get(int p) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }

        return op(sml, smr);
    }

    S all_prod() {
        return d[1];
    }

    // 0 <= p < n
    void apply(int p, F f) {
        assert(0 <= p && p < _n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // Apply f on all elements in range [l, r-1]
    // 0 <= l <= r <= n
    void apply(int l, int r, F f) {
        assert(0 <= l && l <= r && r <= _n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*g)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return g(x); });
    }
    template <class G> int max_right(int l, G g) {
        assert(0 <= l && l <= _n);
        assert(g(e()));
        if (l == _n) return _n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!g(op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l = (2 * l);
                    if (g(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*g)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return g(x); });
    }
    template <class G> int min_left(int r, G g) {
        assert(0 <= r && r <= _n);
        assert(g(e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!g(op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (2 * r + 1);
                    if (g(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }


private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2*k, lz[k]);
        all_apply(2*k+1, lz[k]);
        lz[k] = id();
    }
};
// }}}
 
int sub4(int n, const std::vector<int>& a) {
    int res = 0;
    int ln = *max_element(a.begin(), a.end());
    for (int median = 0; median <= ln; ++median) {
        vector<int> cnt_less(n, 0);
        vector<int> cnt_equal(n, 0);
        vector<int> cnt_greater(n, 0);
        for (int i = 0; i < n; ++i) {
            cnt_less[i] = a[i] < median;
            cnt_equal[i] = a[i] == median;
            cnt_greater[i] = a[i] > median;
        }
        std::partial_sum(cnt_less.begin(), cnt_less.end(), cnt_less.begin());
        std::partial_sum(cnt_equal.begin(), cnt_equal.end(), cnt_equal.begin());
        std::partial_sum(cnt_greater.begin(), cnt_greater.end(), cnt_greater.begin());
 
        //    cnt_less[r]   + cnt_equal[r]   - cnt_greater[r]
        // >= cnt_less[l-1] + cnt_equal[l-1] - cnt_greater[l-1]
        //
        //    cnt_less[r]   - cnt_equal[r]   - cnt_greater[r]
        //  < cnt_less[l-1] - cnt_equal[l-1] - cnt_greater[l-1]
        //
        //  l < r
        vector<vector<pair<int,int>>> f1_at(n*2 + 1);
        for (int i = n-1; i >= 0; --i) {
            // add n so that everything >= 0
            int f1 = cnt_less[i] + cnt_equal[i] - cnt_greater[i] + n;
            int f2 = cnt_less[i] - cnt_equal[i] - cnt_greater[i] + n;
            f1_at[f1].emplace_back(i, f2);
        }
        f1_at[n].emplace_back(-1, n);
 
        SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> st(2*n + 1);
        for (int f1 = 2*n; f1 >= 0; --f1) {
            // f1(r) >= f1(l-1) && f2(r) < f2(l-1)
            for (const auto& [i, f2] : f1_at[f1]) {
                // l = i + 1
                int max_r = st.prod(0, f2 + 1);
                if (max_r > i) {
                    res = max(res, cnt_equal[max_r] - (i >= 0 ? cnt_equal[i] : 0));
                }
                // r = i
                st.set(f2, max(st.get(f2), i));
            }
        }
    }
    return res;
}

using F = int;
int mapping(F f, int s) {
    return f + s;
}
F composition(F f, F g) {
    return f + g;
}
F id() { return 0; }

bool can(int n, int eq, const vector<int>& a, const vector<vector<int>>& ids) {
    int ln = *max_element(a.begin(), a.end());
    LazySegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e, F, mapping, composition, id> st_max(n + 1);
    LazySegTree<int, MinSegTreeOp::op, MinSegTreeOp::e, F, mapping, composition, id> st_min(n + 1);
    st_max.set(0, 0);
    st_min.set(0, 0);
 
    for (int median = 0; median <= ln; median++) {
        if (median == 0) {
            for (int i = 1; i <= n; ++i) {
                st_max.set(i, i);
                st_min.set(i, i);
            }
        } else {
            // greater is affected?
            for (int i : ids[median]) {
                // previously: greater = 1, now: greater = 0
                st_max.apply(i, n+1, -1);
                st_min.apply(i, n+1, -1);
            }
            // less is affected?
            for (int i : ids[median-1]) {
                // previously: less = 0, now: less = 1
                st_max.apply(i, n+1, -1);
                st_min.apply(i, n+1, -1);
            }
        }
 
        if (SZ(ids[median]) < eq) continue;
        for (int ix = 0, iy = eq-1; iy < SZ(ids[median]); ++ix, ++iy) {
            int x = ids[median][ix];
            int y = ids[median][iy];
 
            // find [l, r]:
            // - l <= x < y <= r
            // - less + eq >= greater
            // - greater + eq >= less
            // - eq >= greater - less >= -eq
            // - eq >= (greater(r) - less(r)) - (greater(l-1) - less(l-1)) >= -eq
 
            int max_val = st_max.prod(y, n+1) - st_min.prod(0, x);
            int min_val = st_min.prod(y, n+1) - st_max.prod(0, x);
 
            // [-eq, eq] and [min_val, max_val] intersects
            if (min_val <= eq && max_val >= -eq) return true;
        }
    }
    return false;
}

int sub5(int n, std::vector<int> a) {
    // ids from 1
    a.insert(a.begin(), 0);
 
    vector<vector<int>> ids(n + 1);
    for (int i = 1; i <= n; ++i) {
        ids[a[i]].push_back(i);
    }
 
    int max_freq = 0;
    for (int i = 1; i <= n; ++i) {
        max_freq = max(max_freq, SZ(ids[i]));
    }
    int left = 1, right = max_freq, res = 1;
    while (left <= right) {
        int mid = (left + right) / 2;
        if (can(n, mid, a, ids)) {
            res = mid;
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return res;
}
 
int sequence(int n, std::vector<int> a) {
    if (is_sub_3(a)) return sub3(a);
    if (n <= 2000 || *max_element(a.begin(), a.end()) <= 3) sub4(n, a);
    return sub5(n, a);
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 268 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 2 ms 308 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 268 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 2 ms 308 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
13 Correct 504 ms 664 KB Output is correct
14 Correct 485 ms 468 KB Output is correct
15 Correct 22 ms 544 KB Output is correct
16 Correct 22 ms 536 KB Output is correct
17 Correct 13 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 525 ms 516 KB Output is correct
20 Correct 516 ms 524 KB Output is correct
21 Incorrect 506 ms 588 KB Output isn't correct
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 151 ms 31648 KB Output is correct
3 Correct 187 ms 31648 KB Output is correct
4 Correct 40 ms 6100 KB Output is correct
5 Correct 188 ms 29100 KB Output is correct
6 Correct 145 ms 29156 KB Output is correct
7 Correct 33 ms 6088 KB Output is correct
8 Correct 34 ms 6092 KB Output is correct
9 Correct 33 ms 6104 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Execution timed out 2077 ms 61292 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1006 ms 47840 KB Output is correct
2 Correct 1047 ms 47924 KB Output is correct
3 Correct 421 ms 47264 KB Output is correct
4 Correct 428 ms 47260 KB Output is correct
5 Correct 737 ms 43936 KB Output is correct
6 Correct 1139 ms 44028 KB Output is correct
7 Correct 1079 ms 42840 KB Output is correct
8 Correct 808 ms 42484 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 268 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 2 ms 308 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
13 Correct 504 ms 664 KB Output is correct
14 Correct 485 ms 468 KB Output is correct
15 Correct 22 ms 544 KB Output is correct
16 Correct 22 ms 536 KB Output is correct
17 Correct 13 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 525 ms 516 KB Output is correct
20 Correct 516 ms 524 KB Output is correct
21 Incorrect 506 ms 588 KB Output isn't correct
22 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 2 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 268 KB Output is correct
9 Correct 2 ms 212 KB Output is correct
10 Correct 2 ms 212 KB Output is correct
11 Correct 2 ms 308 KB Output is correct
12 Correct 2 ms 212 KB Output is correct
13 Correct 504 ms 664 KB Output is correct
14 Correct 485 ms 468 KB Output is correct
15 Correct 22 ms 544 KB Output is correct
16 Correct 22 ms 536 KB Output is correct
17 Correct 13 ms 468 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 525 ms 516 KB Output is correct
20 Correct 516 ms 524 KB Output is correct
21 Incorrect 506 ms 588 KB Output isn't correct
22 Halted 0 ms 0 KB -