Submission #753017

# Submission time Handle Problem Language Result Execution time Memory
753017 2023-06-04T13:15:13 Z I_love_Hoang_Yen Sequence (APIO23_sequence) C++17
28 / 100
2000 ms 45728 KB
#include "sequence.h"
#include <bits/stdc++.h>
#define SZ(s) ((int) ((s).size()))
using namespace std;

// SegTree, copied from AtCoder library {{{
// AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html
//
// Notes:
// - Index of elements from 0 -> n-1
// - Range queries are [l, r-1]
//
// Tested:
// - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j
// - https://oj.vnoi.info/problem/gss
// - https://oj.vnoi.info/problem/nklineup
// - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr
// - https://judge.yosupo.jp/problem/point_add_range_sum
// - https://judge.yosupo.jp/problem/point_set_range_composite
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

template<
    class T,  // data type for nodes
    T (*op) (T, T),  // operator to combine 2 nodes
    T (*e)() // identity element
>
struct SegTree {
    SegTree() : SegTree(0) {}
    explicit SegTree(int n) : SegTree(vector<T> (n, e())) {}
    explicit SegTree(const vector<T>& v) : _n((int) v.size()) {
        log = ceil_pow2(_n);
        size = 1<<log;
        d = vector<T> (2*size, e());

        for (int i = 0; i < _n; i++) d[size+i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    // 0 <= p < n
    void set(int p, T x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    // 0 <= p < n
    T get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    // Get product in range [l, r-1]
    // 0 <= l <= r <= n
    // For empty segment (l == r) -> return e()
    T prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        T sml = e(), smr = e();
        l += size;
        r += size;
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    T all_prod() const {
        return d[1];
    }

    // Binary search on SegTree to find largest r:
    //    f(op(a[l] .. a[r-1])) = true   (assuming empty array is always true)
    //    f(op(a[l] .. a[r])) = false    (assuming op(..., a[n]), which is out of bound, is always false)
    template <bool (*f)(T)> int max_right(int l) const {
        return max_right(l, [](T x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        T sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    // Binary search on SegTree to find smallest l:
    //    f(op(a[l] .. a[r-1])) = true      (assuming empty array is always true)
    //    f(op(a[l-1] .. a[r-1])) = false   (assuming op(a[-1], ..), which is out of bound, is always false)
    template <bool (*f)(T)> int min_left(int r) const {
        return min_left(r, [](T x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        T sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

private:
    int _n, size, log;
    vector<T> d;

    void update(int k) {
        d[k] = op(d[2*k], d[2*k+1]);
    }
};
// }}}
// SegTree examples {{{
// Examples: Commonly used SegTree ops: max / min / sum
struct MaxSegTreeOp {
    static int op(int x, int y) {
        return max(x, y);
    }
    static int e() {
        return INT_MIN;
    }
};

struct MinSegTreeOp {
    static int op(int x, int y) {
        return min(x, y);
    }
    static int e() {
        return INT_MAX;
    }
};

struct SumSegTreeOp {
    static long long op(long long x, long long y) {
        return x + y;
    }
    static long long e() {
        return 0;
    }
};

// using STMax = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>;
// using STMin = SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e>;
// using STSum = SegTree<int, SumSegTreeOp::op, SumSegTreeOp::e>;
// }}}

bool can(int n, int eq, const vector<int>& a, const vector<vector<int>>& ids) {
    int ln = *max_element(a.begin(), a.end());
    SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> st_max(n + 1);
    SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e> st_min(n + 1);

    vector<int> f(n+1, 0), greater(n+1, 0), less(n+1, 0);
    for (int median = 0; median <= ln; median++) {
        if (SZ(ids[median]) < eq) continue;

        st_max.set(0, 0);
        st_min.set(0, 0);
        for (int i = 1; i <= n; ++i) {
            greater[i] = a[i] > median;
            less[i] = a[i] < median;
            f[i] = f[i-1] + (greater[i] - less[i]);
            st_max.set(i, f[i]);
            st_min.set(i, f[i]);
        }

        for (int ix = 0, iy = eq-1; iy < SZ(ids[median]); ++ix, ++iy) {
            int x = ids[median][ix];
            int y = ids[median][iy];

            // find [l, r]:
            // - l <= x < y <= r
            // - less + eq >= greater
            // - greater + eq >= less
            // - eq >= greater - less >= -eq
            // - eq >= (greater(r) - less(r)) - (greater(l-1) - less(l-1)) >= -eq

            int max_val = st_max.prod(y, n+1) - st_min.prod(0, x);
            int min_val = st_min.prod(y, n+1) - st_max.prod(0, x);

            // [-eq, eq] and [min_val, max_val] intersects
            if (min_val <= eq && max_val >= -eq) return true;
        }
    }
    return false;
}
int sequence(int n, std::vector<int> a) {
    // ids from 1
    a.insert(a.begin(), 0);

    vector<vector<int>> ids(n + 1);
    for (int i = 1; i <= n; ++i) {
        ids[a[i]].push_back(i);
    }

    int left = 1, right = n, res = 1;
    while (left <= right) {
        int mid = (left + right) / 2;
        if (can(n, mid, a, ids)) {
            res = mid;
            left = mid + 1;
        } else {
            right = mid - 1;
        }
    }
    return res;
}
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 13 ms 468 KB Output is correct
14 Correct 13 ms 340 KB Output is correct
15 Correct 8 ms 436 KB Output is correct
16 Correct 8 ms 440 KB Output is correct
17 Correct 4 ms 340 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 2 ms 340 KB Output is correct
21 Correct 3 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 457 ms 39980 KB Output is correct
3 Correct 705 ms 40012 KB Output is correct
4 Correct 882 ms 32656 KB Output is correct
5 Correct 490 ms 39252 KB Output is correct
6 Correct 399 ms 39032 KB Output is correct
7 Execution timed out 2037 ms 32588 KB Time limit exceeded
8 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 601 ms 32928 KB Output is correct
3 Correct 1558 ms 33476 KB Output is correct
4 Correct 802 ms 33636 KB Output is correct
5 Correct 554 ms 33088 KB Output is correct
6 Execution timed out 2084 ms 33484 KB Time limit exceeded
7 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 708 ms 45728 KB Output is correct
2 Execution timed out 2066 ms 45700 KB Time limit exceeded
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 13 ms 468 KB Output is correct
14 Correct 13 ms 340 KB Output is correct
15 Correct 8 ms 436 KB Output is correct
16 Correct 8 ms 440 KB Output is correct
17 Correct 4 ms 340 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 2 ms 340 KB Output is correct
21 Correct 3 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Execution timed out 2047 ms 7408 KB Time limit exceeded
24 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 0 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 13 ms 468 KB Output is correct
14 Correct 13 ms 340 KB Output is correct
15 Correct 8 ms 436 KB Output is correct
16 Correct 8 ms 440 KB Output is correct
17 Correct 4 ms 340 KB Output is correct
18 Correct 1 ms 468 KB Output is correct
19 Correct 1 ms 340 KB Output is correct
20 Correct 2 ms 340 KB Output is correct
21 Correct 3 ms 340 KB Output is correct
22 Correct 2 ms 340 KB Output is correct
23 Correct 457 ms 39980 KB Output is correct
24 Correct 705 ms 40012 KB Output is correct
25 Correct 882 ms 32656 KB Output is correct
26 Correct 490 ms 39252 KB Output is correct
27 Correct 399 ms 39032 KB Output is correct
28 Execution timed out 2037 ms 32588 KB Time limit exceeded
29 Halted 0 ms 0 KB -