Submission #752957

#TimeUsernameProblemLanguageResultExecution timeMemory
752957I_love_Hoang_YenSequence (APIO23_sequence)C++17
23 / 100
2075 ms65564 KiB
#include "sequence.h" #include <bits/stdc++.h> #define SZ(s) ((int) ((s).size())) using namespace std; // SegTree, copied from AtCoder library {{{ // AtCoder doc: https://atcoder.github.io/ac-library/master/document_en/segtree.html // // Notes: // - Index of elements from 0 -> n-1 // - Range queries are [l, r-1] // // Tested: // - (binary search) https://atcoder.jp/contests/practice2/tasks/practice2_j // - https://oj.vnoi.info/problem/gss // - https://oj.vnoi.info/problem/nklineup // - (max_right & min_left for delete position queries) https://oj.vnoi.info/problem/segtree_itstr // - https://judge.yosupo.jp/problem/point_add_range_sum // - https://judge.yosupo.jp/problem/point_set_range_composite int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } template< class T, // data type for nodes T (*op) (T, T), // operator to combine 2 nodes T (*e)() // identity element > struct SegTree { SegTree() : SegTree(0) {} explicit SegTree(int n) : SegTree(vector<T> (n, e())) {} explicit SegTree(const vector<T>& v) : _n((int) v.size()) { log = ceil_pow2(_n); size = 1<<log; d = vector<T> (2*size, e()); for (int i = 0; i < _n; i++) d[size+i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } // 0 <= p < n void set(int p, T x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } // 0 <= p < n T get(int p) const { assert(0 <= p && p < _n); return d[p + size]; } // Get product in range [l, r-1] // 0 <= l <= r <= n // For empty segment (l == r) -> return e() T prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); T sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } T all_prod() const { return d[1]; } // Binary search on SegTree to find largest r: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l] .. a[r])) = false (assuming op(..., a[n]), which is out of bound, is always false) template <bool (*f)(T)> int max_right(int l) const { return max_right(l, [](T x) { return f(x); }); } template <class F> int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; T sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } // Binary search on SegTree to find smallest l: // f(op(a[l] .. a[r-1])) = true (assuming empty array is always true) // f(op(a[l-1] .. a[r-1])) = false (assuming op(a[-1], ..), which is out of bound, is always false) template <bool (*f)(T)> int min_left(int r) const { return min_left(r, [](T x) { return f(x); }); } template <class F> int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; T sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; vector<T> d; void update(int k) { d[k] = op(d[2*k], d[2*k+1]); } }; // }}} // SegTree examples {{{ // Examples: Commonly used SegTree ops: max / min / sum struct MaxSegTreeOp { static int op(int x, int y) { return max(x, y); } static int e() { return INT_MIN; } }; struct MinSegTreeOp { static int op(int x, int y) { return min(x, y); } static int e() { return INT_MAX; } }; struct SumSegTreeOp { static long long op(long long x, long long y) { return x + y; } static long long e() { return 0; } }; // using STMax = SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e>; // using STMin = SegTree<int, MinSegTreeOp::op, MinSegTreeOp::e>; // using STSum = SegTree<int, SumSegTreeOp::op, SumSegTreeOp::e>; // }}} int sequence(int n, std::vector<int> a) { int res = 0; int ln = *max_element(a.begin(), a.end()); for (int median = 0; median <= ln; ++median) { vector<int> cnt_less(n, 0); vector<int> cnt_equal(n, 0); vector<int> cnt_greater(n, 0); for (int i = 0; i < n; ++i) { cnt_less[i] = a[i] < median; cnt_equal[i] = a[i] == median; cnt_greater[i] = a[i] > median; } std::partial_sum(cnt_less.begin(), cnt_less.end(), cnt_less.begin()); std::partial_sum(cnt_equal.begin(), cnt_equal.end(), cnt_equal.begin()); std::partial_sum(cnt_greater.begin(), cnt_greater.end(), cnt_greater.begin()); // cnt_less[r] + cnt_equal[r] - cnt_greater[r] // >= cnt_less[l-1] + cnt_equal[l-1] - cnt_greater[l-1] // // cnt_less[r] - cnt_equal[r] - cnt_greater[r] // < cnt_less[l-1] - cnt_equal[l-1] - cnt_greater[l-1] // // l < r // // f1(r) >= f1(l-1) // f2(r) < f2(l-1) // max(equals[r]) vector<vector<pair<int,int>>> f1_at(n*2 + 1); for (int i = n-1; i >= 0; --i) { // add n so that everything >= 0 int f1 = cnt_less[i] + cnt_equal[i] - cnt_greater[i] + n; int f2 = cnt_less[i] - cnt_equal[i] - cnt_greater[i] + n; f1_at[f1].emplace_back(i, f2); } f1_at[n].emplace_back(-1, n); SegTree<int, MaxSegTreeOp::op, MaxSegTreeOp::e> st(2*n + 1); for (int f1 = 2*n; f1 >= 0; --f1) { for (const auto& [i, f2] : f1_at[f1]) { // l = i + 1 int max_r = st.prod(0, f2); if (max_r > i) { res = max(res, cnt_equal[max_r] - (i >= 0 ? cnt_equal[i] : 0)); } // r = i st.set(f2, max(st.get(f2), i)); } } } return res; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...