Submission #75280

#TimeUsernameProblemLanguageResultExecution timeMemory
75280adminMeetings (IOI18_meetings)C++17
100 / 100
5456 ms291672 KiB
#pragma GCC optimize ("O3") #pragma GCC target ("sse4") #include <bits/stdc++.h> #include <ext/pb_ds/tree_policy.hpp> #include <ext/pb_ds/assoc_container.hpp> #include <ext/rope> using namespace std; using namespace __gnu_pbds; using namespace __gnu_cxx; typedef long long ll; typedef long double ld; typedef complex<ld> cd; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef pair<ld,ld> pd; typedef vector<int> vi; typedef vector<ld> vd; typedef vector<ll> vl; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<cd> vcd; template <class T> using Tree = tree<T, null_type, less<T>, rb_tree_tag,tree_order_statistics_node_update>; #define FOR(i, a, b) for (int i=a; i<(b); i++) #define F0R(i, a) for (int i=0; i<(a); i++) #define FORd(i,a,b) for (int i = (b)-1; i >= a; i--) #define F0Rd(i,a) for (int i = (a)-1; i >= 0; i--) #define sz(x) (int)(x).size() #define mp make_pair #define pb push_back #define f first #define s second #define lb lower_bound #define ub upper_bound #define all(x) x.begin(), x.end() const int MOD = 1000000007; const ll INF = 1e18; const int MX = 1<<20; const int SZ = 750001; #include "meetings.h" pl operator*(const pl& l, const ll& r) { return {l.f*r,l.s*r}; } pl operator+(const pl& l, const pl& r) { return {l.f+r.f,l.s+r.s}; } pl operator+=(pl& l, const pl& r) { return l = {l.f+r.f,l.s+r.s}; } int N; vpi hei; void checkmn(ll& x, ll y) { x = min(x,y); } struct RMQ { int mx[21][SZ]; int bet(int a, int b) { return hei[a] > hei[b] ? a : b; } void clear() { F0R(i,N) mx[0][i] = i; FOR(j,1,21) F0R(i,N-(1<<j)+1) mx[j][i] = bet(mx[j-1][i],mx[j-1][i+(1<<(j-1))]); } int query(int L, int R) { int x = 31-__builtin_clz(R-L+1); return bet(mx[x][L],mx[x][R-(1<<x)+1]); } }; RMQ RM; struct DSU { int par[SZ], left[SZ], right[SZ]; void clear() { F0R(i,SZ) par[i] = left[i] = right[i] = i; } int get(int x) { if (par[x] != x) return par[x] = get(par[x]); return x; } inline void unite(int a, int b) { a = get(a), b = get(b); if (right[a]-left[a] < right[b]-left[b]) swap(a,b); par[b] = a; left[a] = min(left[a],left[b]); right[a] = max(right[a],right[b]); } }; ll ans[SZ]; vector<array<int,3>> tmp[SZ]; struct Seg { ll val[2*MX]; pair<int,pl> lazy[2*MX], done = mp(1,mp(0,0)); inline void push(int ind, int L, int R) { if (lazy[ind] == done) return; val[ind] = val[ind]*lazy[ind].f+lazy[ind].s.f*R+lazy[ind].s.s; if (L != R) { if (lazy[ind].f == 0) lazy[2*ind] = lazy[ind]; else lazy[2*ind].s += lazy[ind].s; if (lazy[ind].f == 0) lazy[2*ind+1] = lazy[ind]; else lazy[2*ind+1].s += lazy[ind].s; } lazy[ind] = done; } inline void pull(int ind) { val[ind] = val[2*ind+1]; } void upd(int lo, int hi, pair<int,pl> A, int ind = 1, int L = 0, int R = SZ-1) { push(ind,L,R); if (R < lo || hi < L) return; if (lo <= L && R <= hi) { lazy[ind] = A; push(ind,L,R); return; } int M = (L+R)/2; upd(lo,hi,A,2*ind,L,M); upd(lo,hi,A,2*ind+1,M+1,R); pull(ind); } ll get(int pos, int ind = 1, int L = 0, int R = SZ-1) { push(ind,L,R); if (L == R) return val[ind]; int M = (L+R)/2; if (pos <= M) return get(pos,2*ind,L,M); return get(pos,2*ind+1,M+1,R); } int getFst(int x, int lo, int hi, ll ori, int ind = 1, int L = 0, int R = SZ-1) { push(ind,L,R); int M = (L+R)/2; if (R <= hi) { if (R <= x) return -1; ll val1 = (ll)hei[x].f*(R-x+1)+ori; ll val2 = (ll)hei[x].f*(x-lo+1)+val[ind]; // first one such that 2nd is less if (val1 < val2) return -1; } if (L == R) return L; int z = getFst(x,lo,hi,ori,2*ind,L,M); if (z != -1) return z; return getFst(x,lo,hi,ori,2*ind+1,M+1,R); } }; Seg S; DSU D; void tri(int x) { if (x < N-1 && hei[x] > hei[x+1]) D.unite(x,x+1); if (x > 0 && hei[x] > hei[x-1]) D.unite(x-1,x); int L = D.left[D.get(x)], R = D.right[D.get(x)]; ll preVal = (L == x ? 0 : S.get(x-1)); for (auto y: tmp[x]) checkmn(ans[y[2]],(ll)(x-y[0]+1)*hei[x].f+S.get(y[1])); int ind = S.getFst(x,L,R,preVal); if (ind == -1) ind = R+1; S.upd(x,ind-1,{0,{hei[x].f,preVal-(ll)(x-1)*hei[x].f}}); S.upd(ind,R,{1,{0,(ll)(x-L+1)*hei[x].f}}); } void solve(vi L, vi R) { RM.clear(); D.clear(); S = Seg(); vi h; F0R(i,N) h.pb(i); sort(all(h),[](int a, int b) { return hei[a] < hei[b]; }); F0R(i,SZ) tmp[i].clear(); F0R(i,sz(L)) tmp[RM.query(L[i],R[i])].pb({L[i],R[i],i}); F0R(i,sz(h)) tri(h[i]); } std::vector<long long> minimum_costs(std::vector<int> H, std::vector<int> L, std::vector<int> R) { N = sz(H); F0R(i,N) hei.pb({H[i],i}); F0R(i,sz(L)) ans[i] = INF; solve(L,R); reverse(all(hei)); F0R(i,sz(L)) { L[i] = sz(H)-1-L[i]; R[i] = sz(H)-1-R[i]; swap(L[i],R[i]); } solve(L,R); vl ret; F0R(i,sz(L)) ret.pb(ans[i]); return ret; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...