Submission #752238

#TimeUsernameProblemLanguageResultExecution timeMemory
752238tch1cherinOlympic Bus (JOI20_ho_t4)C++17
37 / 100
1085 ms83408 KiB
#pragma GCC optimize("O3,unroll-loops") #pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt") #include <bits/stdc++.h> using namespace std; // Trash code from https://www.geeksforgeeks.org/pairing-heap/ struct HeapNode { pair<int, int> key; HeapNode *leftChild; HeapNode *nextSibling; HeapNode(): leftChild(NULL), nextSibling(NULL) {} // creates a new node HeapNode(pair<int, int> key_, HeapNode *leftChild_, HeapNode *nextSibling_): key(key_), leftChild(leftChild_), nextSibling(nextSibling_) {} // Adds a child and sibling to the node void addChild(HeapNode *node) { if(leftChild == NULL) leftChild = node; else { node->nextSibling = leftChild; leftChild = node; } } }; // Returns true if root of the tree // is null otherwise returns false bool Empty(HeapNode *node) { return (node == NULL); } // Function to merge two heaps HeapNode *Merge(HeapNode *A, HeapNode *B) { // If any of the two-nodes is null // the return the not null node if(A == NULL) return B; if(B == NULL) return A; // To maintain the min heap condition compare // the nodes and node with minimum value become // parent of the other node if(A->key < B->key) { A->addChild(B); return A; } else { B->addChild(A); return B; } return NULL; // Unreachable } // Returns the root value of the heap pair<int, int> Top(HeapNode *node) { return node->key; } // Function to insert the new node in the heap HeapNode *Insert(HeapNode *node, pair<int, int> key) { return Merge(node, new HeapNode(key, NULL, NULL)); } // This method is used when we want to delete root node HeapNode *TwoPassMerge(HeapNode *node) { if(node == NULL || node->nextSibling == NULL) return node; else { HeapNode *A, *B, *newNode; A = node; B = node->nextSibling; newNode = node->nextSibling->nextSibling; A->nextSibling = NULL; B->nextSibling = NULL; return Merge(Merge(A, B), TwoPassMerge(newNode)); } return NULL; // Unreachable } // Function to delete the root node in heap HeapNode *Delete(HeapNode *node) { return TwoPassMerge(node->leftChild); } struct PairingHeap { HeapNode *root; PairingHeap(): root(NULL) {} bool Empty(void) { return ::Empty(root); } pair<int, int> Top(void) { return ::Top(root); } void Insert(pair<int, int> key) { root = ::Insert(root, key); } void Delete(void) { root = ::Delete(root); } void Join(PairingHeap other) { root = ::Merge(root, other.root); } }; struct edge { int from, to, weight, cost, id; edge() {} edge(int _from, int _to, int _weight, int _cost, int _id) : from(_from), to(_to), weight(_weight), cost(_cost), id(_id) {} }; struct node { int distance, parent; node() { distance = INT_MAX; parent = -1; } node(int _distance, int _parent) : distance(_distance), parent(_parent) {} }; struct result { int edge; vector<int> distances; }; vector<node> dijkstra(vector<vector<edge>> graph, int start) { int n = (int)graph.size(); vector<node> answer(n); PairingHeap q; q.Insert({0, start}); answer[start].distance = 0; while (!q.Empty()) { auto [d, u] = q.Top(); q.Delete(); if (answer[u].distance > d) { continue; } for (auto [from, to, weight, cost, id] : graph[u]) { if (answer[from].distance + weight < answer[to].distance) { answer[to] = node(answer[from].distance + weight, id); q.Insert({answer[to].distance, to}); } } } return answer; } vector<vector<edge>> transpose(vector<vector<edge>> graph) { int n = (int)graph.size(); vector<vector<edge>> new_graph(n); for (int u = 0; u < n; u++) { for (auto [from, to, weight, cost, id] : graph[u]) { new_graph[to].emplace_back(to, from, weight, cost, id); } } return new_graph; } vector<vector<int>> find_shortest_paths_without_each_edge(vector<vector<edge>> graph, int start) { int n = (int)graph.size(); int m = 0; for (int u = 0; u < n; u++) { for (auto [from, to, weight, cost, id] : graph[u]) { m = max(m, 1 + id); } } vector<node> result = dijkstra(graph, start); vector<int> dist(n); for (int i = 0; i < n; i++) { dist[i] = result[i].distance; } vector<vector<int>> answer(m); for (auto [distance, parent] : result) { if (parent != -1) { vector<vector<edge>> new_graph = graph; for (int u = 0; u < n; u++) { for (int i = 0; i < (int)new_graph[u].size(); i++) { auto [from, to, weight, cost, id] = new_graph[u][i]; if (id == parent) { new_graph[u].erase(new_graph[u].begin() + i); break; } } } vector<node> new_result = dijkstra(new_graph, start); answer[parent] = vector<int>(n); for (int i = 0; i < n; i++) { answer[parent][i] = new_result[i].distance; } } } answer.push_back(dist); return answer; } void solve() { int n, m; cin >> n >> m; vector<vector<edge>> graph(n); for (int i = 0; i < m; i++) { int from, to, weight, cost; cin >> from >> to >> weight >> cost; from--, to--; graph[from].emplace_back(from, to, weight, cost, i); } vector<vector<edge>> rev_graph = transpose(graph); vector<vector<int>> result_a = find_shortest_paths_without_each_edge(graph, 0); vector<vector<int>> result_b = find_shortest_paths_without_each_edge(graph, n - 1); vector<vector<int>> rev_result_a = find_shortest_paths_without_each_edge(rev_graph, 0); vector<vector<int>> rev_result_b = find_shortest_paths_without_each_edge(rev_graph, n - 1); auto get = [](vector<vector<int>>& x, int i, int j) { if (x[i].empty()) { return x.back()[j]; } else { return x[i][j]; } }; int ans = INT_MAX; if (result_a.back()[n - 1] != INT_MAX && result_b.back()[0] != INT_MAX) { ans = result_a.back()[n - 1] + result_b.back()[0]; } for (int u = 0; u < n; u++) { for (auto [from, to, weight, cost, id] : graph[u]) { int AB = INT_MAX, BA = INT_MAX; AB = min(AB, get(result_a, id, n - 1)); if (get(result_a, id, to) != INT_MAX && get(rev_result_b, id, from) != INT_MAX) { AB = min(AB, get(result_a, id, to) + get(rev_result_b, id, from) + weight); } BA = min(BA, get(result_b, id, 0)); if (get(result_b, id, to) != INT_MAX && get(rev_result_a, id, from) != INT_MAX) { BA = min(BA, get(result_b, id, to) + get(rev_result_a, id, from) + weight); } if (AB == INT_MAX || BA == INT_MAX) { continue; } ans = min(ans, AB + BA + cost); } } cout << (ans == INT_MAX ? -1 : ans) << "\n"; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); solve(); }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...