Submission #75060

#TimeUsernameProblemLanguageResultExecution timeMemory
75060dacin21Meetings (IOI18_meetings)C++14
100 / 100
4239 ms353996 KiB
// 100 p #undef _GLIBCXX_DEBUG #include <bits/stdc++.h> #ifdef LOCAL_RUN #include "prettyprint.hpp" #endif // LOCAL_RUN #define debug(x) do{}while(0) using namespace std; using ll = long long; template<typename T> using min_heap = priority_queue<T, vector<T>, greater<T>>; constexpr int inf = 1e9; // could maybe be optimized by transposing template<typename T = int, typename comp = greater<T>> class Sparsetable{ int compind(int i, int j, int l, int sign)const{ i = RMQ[lgn*i+l], j=RMQ[lgn*(j+sign*(1<<l))+l]; return comp()(data[i], data[j])? i : j; } int minind(int l, int r)const{ assert(l<r); return compind(l, r, lg2[r-l],-1); } void build(){ lg2.resize(n+1); for(int i=2;i<=n;++i) lg2[i]=1+lg2[i/2]; lgn = lg2.back()+1; RMQ.resize(n*lgn); for(int i=n-1;i>=0;--i){ RMQ[lgn*i]=i; for(int j=0;j<lg2[n-i];++j) RMQ[lgn*i+j+1] = compind(i,i,j,1); } } public: Sparsetable(T const*v, int _N):n(_N), data(v, v+_N){build();} Sparsetable(vector<T> const&v):Sparsetable(v.data(), v.size()){}; // min in [l, r) pair<int, T&> operator()(int const&i, int const&j){ int k = minind(i, j); return pair<int, T&>(k, data[k]); } int n, lgn; vector<int> RMQ, lg2; vector<T> data; }; struct Node{ int l_size, r_size; pair<int, int> val; ll l_dp, r_dp, dp; int get_size(){return l_size + r_size + 1;} void recalc_dp(){ ll cand1 = l_dp + (r_size+1)*(ll)val.first; ll cand2 = r_dp + (l_size+1)*(ll)val.first; dp = min(cand1, cand2); } }; int n, q; vector<pair<int, int> > calc_maxval(vector<pair<int, int>> const&H, vector<int> const&L, vector<int> const&R){ Sparsetable<pair<int, int> > s(H); vector<pair<int, int>> ret(q); for(int i=0;i<q;++i){ ret[i] = s(L[i], R[i]+1).second; } return ret; } struct Block{ struct Node{ pair<int, int> val; ll dp_base; int l_size; ll l_add() const { return (l_size+1)*(ll)val.first; } bool operator<(pair<int, int> const&o) const { return val < o; } bool operator>(pair<int, int> const&o) const { return val > o; } friend ostream& operator<<(ostream&o, Node const&n){ #ifdef LOCAL_RUN return o << n.val << " " << n.dp_base << " " << n.l_size; #else return o; #endif } }; deque<Node> nodes; ll a, b;// globally add a*x+b // returns (r_dp of max, index of max) Block(){} Block(Node const&n, ll a_, ll b_):nodes(1, n), a(a_), b(b_){} pair<ll, int> query(pair<int, int> const&val, int t){ debug(cerr << "Query " << (*this) << " " << val << " " << t << "\n"); auto it = lower_bound(nodes.begin(), nodes.end(), val, std::greater<>()); assert(it != nodes.end() && it->val == val); const int index = it->val.second; ++it; // dp_r is in next block if(it == nodes.end()){ return make_pair(-1, index); } return make_pair(it->dp_base + a*t + b, index); } ll query_dp_r(int t){ const Node& n = nodes.front(); return n.dp_base + a*t + b; } // TODO: fix static Block merge(Block &&l, Block &&r){ // make l's dp depend on r const Node& n1 = l.nodes.back(), n2 = r.nodes.front(); ll l_new_add = -n1.dp_base + n2.dp_base + n1.l_add() - l.b + r.b; l.b += l_new_add; l.a = r.a; // update dp at back Block *a = &l, *b = &r; if(a->nodes.size() > b->nodes.size()){ swap(a, b); } for(auto &e:a->nodes){ e.dp_base += (a->b - b->b); } a->b = b->b; if(l.nodes.size() < r.nodes.size()){ r.nodes.insert(r.nodes.begin(), l.nodes.begin(), l.nodes.end()); return move(r); } else { l.nodes.insert(l.nodes.end(), r.nodes.begin(), r.nodes.end()); return move(l); } } // returns (index, dp) pair<int, ll> intersect(pair<int, int> const&val, int dir){ pair<int, ll> ret(-1, -1); while(!nodes.empty() && nodes.back().val <= val){ const int index = nodes.back().val.second; ret = make_pair(index-dir*nodes.back().l_size, nodes.back().dp_base + a*(val.second-dir) + b); nodes.pop_back(); } return ret; } int calc_intersection(Block const&r, bool const& rev){ const ll m1 = a, q1 = nodes.back().dp_base + b; const ll m2 = r.a, q2 = r.nodes.front().dp_base + r.b + nodes.back().l_add(); debug(cerr << "intersect " << m1 << " " << q1 << " | " << m2 << " " << q2 << "\n"); if(m1 == m2){ if(q2 <= q1){ // already intersected return rev ? inf : -inf; } else { // won't ever intersect return rev ? -inf : inf; } } else { // intersection at (q2-q1)/(m1-m2) -> round correctly long double tmp = (q2 - q1) / (long double)(m1 - m2); if(tmp < -inf) return -inf; if(tmp > inf) return inf; return rev ? floor(tmp) : ceil(tmp); } } friend ostream& operator<<(ostream&o, Block const&b){ #ifdef LOCAL_RUN return o << "Block: " << b.a << "*x + " << b.b << " : " << b.nodes; #else return o; #endif } }; vector<pair<int, ll> > sweep(vector<pair<int, int>> const&H, vector<pair<int, int>> const&M, vector<int> const&R, bool const rev){ vector<int> ord(n); iota(ord.begin(), ord.end(), 0); const int dir = rev ? -1 : 1; if(rev){ reverse(ord.begin(), ord.end()); } vector<vector<int> > ev(n); for(int i=0;i<q;++i){ ev[R[i]].push_back(i); } map<pair<int, int>, Block> s; vector<pair<int, ll> > ret(q); min_heap<array<int, 3> > inters; auto add_event = [&](map<pair<int, int>, Block>::iterator it){ assert(it != s.end()); auto it2 = next(it); if(it2 == s.end()) return; int inter = it2->second.calc_intersection(it->second, rev); inters.push({inter*dir, it->first.first, it->first.second}); }; for(auto const&e:ord){ // add element to cartesian tree Block::Node n{H[e], 0, 0}; auto it = s.begin(); for(;it != s.end();++it){ auto tmp = it->second.intersect(H[e], dir); if(tmp.first == -1 && tmp.second == -1){ break; } n.l_size = abs(e - tmp.first); n.dp_base = tmp.second; } if(it != s.begin()){ --it; s.erase(s.begin(), it); if(it->second.nodes.empty()) s.erase(it); } s[H[e]] = Block(n, n.val.first*dir, -n.val.first*dir * (ll)n.val.second + n.val.first); add_event(s.begin()); // process intersection events while(!inters.empty() && inters.top()[0] <= dir*e){ auto inter = inters.top(); inters.pop(); pair<int, int> l = make_pair(inter[1], inter[2]); auto it = s.find(l); if(it == s.end()) continue; auto it2 = next(it); if(it2 == s.end()) continue; int real_inter = it2->second.calc_intersection(it->second, rev); if(inter[0] != real_inter*dir) continue; it2->second = Block::merge(move(it2->second), move(it->second)); s.erase(it); add_event(it2); } debug(cerr << e << " : " << s << "\n"); // process queries for(auto const&f : ev[e]){ auto it = s.lower_bound(M[f]); assert(it != s.end()); pair<ll, int> ans = it->second.query(M[f], e); if(ans.first == -1){ if(it == s.begin()){ ans.first = 0; } else { ans.first = prev(it)->second.query_dp_r(e); } } ret[f] = make_pair(abs(e-ans.second), ans.first); } //cerr << inters << "\n"; } debug(cerr << "sweep\n" << R << "\n" << M << "\n" << ret << "\n"); return ret; } vector<pair<int, ll> > sweep_slow(vector<pair<int, int>> const&H, vector<pair<int, int>> const&M, vector<int> const&R, bool const rev){ vector<int> ord(n); iota(ord.begin(), ord.end(), 0); if(rev){ reverse(ord.begin(), ord.end()); } vector<vector<int> > ev(n); for(int i=0;i<q;++i){ ev[R[i]].push_back(i); } vector<Node> s; vector<pair<int, ll> > ret(q); for(auto const&e:ord){ // add element to cartesian tree Node n{0, 0, H[e], 0, 0, H[e].first}; while(!s.empty() && n.val >= s.back().val){ n.l_size = s.back().get_size(); n.l_dp = s.back().dp; s.pop_back(); } n.recalc_dp(); s.push_back(n); for(auto it = s.rbegin(), it2=next(it);it2!=s.rend();it = it2, it2 = next(it)){ ++(it2->r_size); it2->r_dp = it->dp; it2->recalc_dp(); } // process queries for(auto const&f : ev[e]){ int i=0; while(s[i].val > M[f]) ++i; assert(s[i].val == M[f]); ret[f] = make_pair(s[i].r_size, s[i].r_dp); } } //cerr << "sweep\n" << R << "\n" << M << "\n" << ret << "\n"; return ret; } vector<ll> minimum_costs(vector<int> HH, vector<int> L, vector<int> R){ assert(L.size() == R.size()); n = HH.size(); q = R.size(); vector<pair<int, int> > H(n); for(int i=0;i<n;++i){ H[i] = make_pair(HH[i], i); } const vector<pair<int, int> > M = calc_maxval(H, L, R); vector<pair<int, ll> > cost_R = sweep(H, M, R, false); vector<pair<int, ll> > cost_L = sweep(H, M, L, true); vector<ll> ret(q); for(int i=0;i<q;++i){ ll cand1 = M[i].first*(ll)(R[i]-L[i]+1-cost_L[i].first) + cost_L[i].second; ll cand2 = M[i].first*(ll)(R[i]-L[i]+1-cost_R[i].first) + cost_R[i].second; debug(cerr << cand1 << " / " << cand2 << "\n"); ret[i] = min(cand1, cand2); } return ret; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...