Submission #749805

# Submission time Handle Problem Language Result Execution time Memory
749805 2023-05-28T14:01:25 Z happypotato Catfish Farm (IOI22_fish) C++17
64 / 100
1000 ms 146736 KB
#include "fish.h"
 
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
#define ff first
#define ss second
#define pb push_back
#pragma GCC optimize("Ofast")
 
long long max_weights(int32_t n, int32_t m, vector<int32_t> X, vector<int32_t> Y,
					vector<int32_t> W) {
	
	for (int i = 0; i < m; i++) {
		X[i]++; Y[i]++;
	}

	// int olda[n + 1][n + 1];
	// for (int i = 0; i <= n; i++) {
	// 	for (int j = 0; j <= n; j++) {
	// 		olda[i][j] = 0;
	// 	}
	// }
	// for (int i = 0; i < m; i++) {
	// 	olda[X[i]][Y[i]] = W[i];
	// }
	// int oldps[n + 1][n + 1]; // ps[i][j] = a[i][1] + ... + a[i][j]
	// for (int i = 1; i <= n; i++) {
	// 	oldps[i][0] = 0;
	// 	for (int j = 1; j <= n; j++) {
	// 		oldps[i][j] = oldps[i][j - 1] + olda[i][j];
	// 	}
	// }

	vector<pii> a[n + 1], ps[n + 1];
	set<int> critpts[n + 1];
	for (int i = 1; i <= n; i++) {
		a[i].pb({0, 0});
		ps[i].pb({0, 0});
		critpts[i].insert(0);
		critpts[i].insert(n);
	}
	for (int i = 0; i < m; i++) {
		a[X[i]].pb({Y[i], W[i]});
		// critical points: (X[i] +- 1, Y[i]), (X[i], Y[i] - 1)
		if (X[i] > 1) {
			critpts[X[i] - 1].insert(Y[i]);
		}
		if (X[i] < n) {
			critpts[X[i] + 1].insert(Y[i]);
		}
		critpts[X[i]].insert(Y[i] - 1);
	}
	for (int i = 1; i <= n; i++) {
		sort(a[i].begin(), a[i].end());
		for (pii &x : a[i]) {
			ps[i].pb({x.ff, ps[i].back().ss + x.ss});
		}
	}

	function<int(int, int)> GetPS = [&](int x, int y) -> int {
		int lb = 0, rb = (int)(ps[x].size()) - 1;
		while (lb < rb) {
			int mid = (lb + rb + 1) >> 1;
			if (ps[x][mid].ff <= y) lb = mid;
			else rb = mid - 1;
		}
		return ps[x][lb].ss;
	};
	
	// int olddp[2][n + 1][n + 1];
	// // olddp[increasing][pos][height] = max ans from 1 to pos with pos getting height, height must be increasing
	// for (int i = 0; i <= n; i++) {
	// 	olddp[0][0][i] = olddp[1][0][i] = (i == 0 ? 0 : -1e18);
	// 	olddp[0][1][i] = olddp[1][1][i] = 0;
	// }
	// int oldcur[n + 1];
	// function<void(void)> resetoldcur = [&]() {
	// 	for (int i = 0; i <= n; i++) oldcur[i] = 0;
	// };

	vector<vector<pii>> dp[2];
	dp[0].resize(n + 1); dp[1].resize(n + 1);
	for (int i = 0; i <= n; i++) {
		dp[0][0].pb({i, (i == 0 ? 0 : -1e18)});
		dp[1][0].pb({i, (i == 0 ? 0 : -1e18)});
		
		dp[0][1].pb({i, 0});
		dp[1][1].pb({i, 0});
	}
	for (int i = 2; i <= n; i++) {
		for (int x : critpts[i]) {
			dp[0][i].pb({x, 0});
			dp[1][i].pb({x, 0});
		}
	}
	vector<pii> cur;
 
	for (int i = 2; i <= n; i++) {
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = olddp[1][i][j] = 0;
		// }
		// Case 0: height of i is 0
		// resetoldcur();
		// olddp[0][i][0] = max(olddp[0][i - 1][0], olddp[1][i - 1][0]);
		// for (int j = 1; j <= n; j++) {
		// 	olddp[0][i][0] = max(olddp[0][i][0], max(olddp[0][i - 1][j], olddp[1][i - 1][j]) + oldps[i][j]);
		// }
		// olddp[1][i][0] = olddp[0][i][0];

		{
			// dp[flag][i][0].ff is always 0
			for (int j = 0; j < (int)(dp[0][i - 1].size()); j++) {
				dp[0][i][0].ss = max(dp[0][i][0].ss, max(dp[0][i - 1][j].ss, dp[1][i - 1][j].ss) + GetPS(i, dp[0][i - 1][j].ff));
			}
			dp[1][i][0].ss = dp[0][i][0].ss;
		}
 
		// Case 1: height of i-1 is 0
		// Case 1.1: height of i-2 <= height of i
		// resetoldcur();
		// oldcur[0] = olddp[0][i - 2][0];
		// for (int j = 1; j <= n; j++) {
		// 	oldcur[j] = max(oldcur[j - 1], max(olddp[0][i - 2][j], olddp[1][i - 2][j]));
		// }
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j] + oldps[i - 1][j]);
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j] + oldps[i - 1][j]);
		// }

		{
			cur.clear();
			for (int j = 0; j < (int)(dp[0][i - 2].size()); j++) {
				cur.pb({dp[0][i - 2][j].ff, max(dp[0][i - 2][j].ss, dp[1][i - 2][j].ss)});
			}
			for (int j = 1; j < (int)(cur.size()); j++) {
				cur[j].ss = max(cur[j].ss, cur[j - 1].ss);
			}
			int ptr = 0, curans = 0;
			for (int j = 0; j < (int)(dp[0][i].size()); j++) {
				while (ptr < (int)(cur.size()) && cur[ptr].ff <= dp[0][i][j].ff) {
					curans = max(curans, cur[ptr].ss);
					ptr++;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans + GetPS(i - 1, dp[0][i][j].ff));
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans + GetPS(i - 1, dp[0][i][j].ff));
			}
		}

		// Case 1.2: height of i-2 >= height of i
		// resetoldcur();
		// oldcur[n] = olddp[0][i - 2][n] + oldps[i - 1][n];
		// for (int j = n - 1; j >= 0; j--) {
		// 	oldcur[j] = max(oldcur[j + 1], max(olddp[0][i - 2][j], olddp[1][i - 2][j]) + oldps[i - 1][j]);
		// }
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j]);
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			for (int j = 0; j < (int)(dp[0][i - 2].size()); j++) {
				cur.pb({dp[0][i - 2][j].ff, max(dp[0][i - 2][j].ss, dp[1][i - 2][j].ss) + GetPS(i - 1, dp[0][i - 2][j].ff)});
			}
			for (int j = (int)(cur.size()) - 2; j >= 0; j--) {
				cur[j].ss = max(cur[j].ss, cur[j + 1].ss);
			}
			int ptr = (int)(cur.size()) - 1, curans = 0;
			for (int j = (int)(dp[0][i].size()) - 1; j >= 0; j--) {
				while (ptr >= 0 && cur[ptr].ff >= dp[0][i][j].ff) {
					curans = max(curans, cur[ptr].ss);
					ptr--;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans);
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans);
			}
		}
 
		// now height of i-1 > 0
		// Case 2: height of i-1 <= height of i
		// resetoldcur();
		// oldcur[1] = olddp[0][i - 1][1];
		// for (int j = 2; j <= n; j++) {
		// 	oldcur[j] = max(oldcur[j - 1] + olda[i - 1][j], olddp[0][i - 1][j]);
		// }
		// for (int j = 1; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			int ptr = 1, curans = 0;
			for (int j = 1; j < (int)(dp[0][i].size()); j++) {
				curans += (GetPS(i - 1, dp[0][i][j].ff) - GetPS(i - 1, (j == 1 ? 1 : dp[0][i][j - 1].ff)));
				while (ptr < (int)(dp[0][i - 1].size()) && dp[0][i - 1][ptr].ff <= dp[0][i][j].ff) {
					curans = max(curans, dp[0][i - 1][ptr].ss + (GetPS(i - 1, dp[0][i][j].ff) - GetPS(i - 1, dp[0][i - 1][ptr].ff)));
					ptr++;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans);
			}
		}
 
		// Case 3: height of i-1 >= height of i
		// resetoldcur();
		// oldcur[n] = max(olddp[0][i - 1][n], olddp[1][i - 1][n]);
		// for (int j = n - 1; j >= 1; j--) {
		// 	oldcur[j] = max(oldcur[j + 1] + olda[i][j + 1], max(olddp[0][i - 1][j], olddp[1][i - 1][j]));
		// }
		// for (int j = 1; j <= n; j++) {
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			int ptr = (int)(dp[1][i - 1].size()) - 1, curans = 0;
			for (int j = (int)(dp[1][i].size()) - 1; j >= 1; j--) {
				curans += (GetPS(i, (j + 1 == (int)(dp[1][i].size()) ? n : dp[1][i][j + 1].ff)) - GetPS(i, dp[1][i][j].ff));
				while (ptr >= 0 && dp[1][i - 1][ptr].ff >= dp[0][i][j].ff) {
					curans = max(curans, max(dp[0][i - 1][ptr].ss, dp[1][i - 1][ptr].ss) + (GetPS(i, dp[1][i - 1][ptr].ff) - GetPS(i, dp[1][i][j].ff)));
					ptr--;
				}
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans);
			}
		}
	}
 
	// int ans = max(dp[0][n][0].ss, dp[1][n][0].ss);
	// for (int i = 1; i <= n; i++) {
	// 	// cerr << olddp[0][n][i] << ' ' << olddp[1][n][i] << endl;
	// 	ans = max(ans, max(olddp[0][n][i], olddp[1][n][i]));
	// }
	// return ans;

	// for (int i = 1; i <= n; i++) {
	// 	cerr << i << ": ";
	// 	for (pii &x : dp[1][i]) cerr << "(" << x.ff << ", " << x.ss << ") ";
	// 	cerr << endl;
	// }

	int ans = 0;
	for (pii &x : dp[0][n]) ans = max(ans, x.ss);
	for (pii &x : dp[1][n]) ans = max(ans, x.ss);
	return ans;
}
 
#undef int
# Verdict Execution time Memory Grader output
1 Correct 202 ms 63672 KB Output is correct
2 Correct 254 ms 71988 KB Output is correct
3 Correct 96 ms 53424 KB Output is correct
4 Correct 93 ms 53380 KB Output is correct
5 Execution timed out 1081 ms 146736 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 436 ms 75408 KB Output is correct
3 Correct 526 ms 85312 KB Output is correct
4 Correct 217 ms 63568 KB Output is correct
5 Correct 253 ms 71968 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 100 ms 53364 KB Output is correct
11 Correct 91 ms 53420 KB Output is correct
12 Correct 295 ms 70204 KB Output is correct
13 Correct 344 ms 79744 KB Output is correct
14 Correct 279 ms 66936 KB Output is correct
15 Correct 277 ms 68132 KB Output is correct
16 Correct 280 ms 67116 KB Output is correct
17 Correct 309 ms 73784 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 97 ms 53448 KB Output is correct
2 Correct 103 ms 53392 KB Output is correct
3 Correct 171 ms 57804 KB Output is correct
4 Correct 156 ms 59924 KB Output is correct
5 Correct 252 ms 74612 KB Output is correct
6 Correct 248 ms 74548 KB Output is correct
7 Correct 243 ms 74568 KB Output is correct
8 Correct 245 ms 74636 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 852 KB Output is correct
11 Correct 2 ms 468 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 852 KB Output is correct
11 Correct 2 ms 468 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 596 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 3 ms 724 KB Output is correct
17 Correct 66 ms 9132 KB Output is correct
18 Correct 62 ms 9420 KB Output is correct
19 Correct 57 ms 9392 KB Output is correct
20 Correct 55 ms 8648 KB Output is correct
21 Correct 54 ms 8528 KB Output is correct
22 Correct 129 ms 16720 KB Output is correct
23 Correct 17 ms 3360 KB Output is correct
24 Correct 56 ms 7636 KB Output is correct
25 Correct 3 ms 724 KB Output is correct
26 Correct 16 ms 3084 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 852 KB Output is correct
11 Correct 2 ms 468 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 1 ms 596 KB Output is correct
15 Correct 1 ms 468 KB Output is correct
16 Correct 3 ms 724 KB Output is correct
17 Correct 66 ms 9132 KB Output is correct
18 Correct 62 ms 9420 KB Output is correct
19 Correct 57 ms 9392 KB Output is correct
20 Correct 55 ms 8648 KB Output is correct
21 Correct 54 ms 8528 KB Output is correct
22 Correct 129 ms 16720 KB Output is correct
23 Correct 17 ms 3360 KB Output is correct
24 Correct 56 ms 7636 KB Output is correct
25 Correct 3 ms 724 KB Output is correct
26 Correct 16 ms 3084 KB Output is correct
27 Correct 6 ms 2644 KB Output is correct
28 Correct 444 ms 40048 KB Output is correct
29 Correct 771 ms 59852 KB Output is correct
30 Execution timed out 1044 ms 108592 KB Time limit exceeded
31 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 97 ms 53448 KB Output is correct
2 Correct 103 ms 53392 KB Output is correct
3 Correct 171 ms 57804 KB Output is correct
4 Correct 156 ms 59924 KB Output is correct
5 Correct 252 ms 74612 KB Output is correct
6 Correct 248 ms 74548 KB Output is correct
7 Correct 243 ms 74568 KB Output is correct
8 Correct 245 ms 74636 KB Output is correct
9 Correct 298 ms 79256 KB Output is correct
10 Correct 174 ms 43160 KB Output is correct
11 Correct 380 ms 86036 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 103 ms 53396 KB Output is correct
19 Correct 98 ms 53444 KB Output is correct
20 Correct 101 ms 53516 KB Output is correct
21 Correct 94 ms 53464 KB Output is correct
22 Correct 402 ms 88236 KB Output is correct
23 Correct 484 ms 105860 KB Output is correct
24 Correct 520 ms 107292 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 202 ms 63672 KB Output is correct
2 Correct 254 ms 71988 KB Output is correct
3 Correct 96 ms 53424 KB Output is correct
4 Correct 93 ms 53380 KB Output is correct
5 Execution timed out 1081 ms 146736 KB Time limit exceeded
6 Halted 0 ms 0 KB -