Submission #749799

# Submission time Handle Problem Language Result Execution time Memory
749799 2023-05-28T13:55:45 Z happypotato Catfish Farm (IOI22_fish) C++17
64 / 100
1000 ms 165732 KB
#include "fish.h"
 
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
#define ff first
#define ss second
#define pb push_back
 
long long max_weights(int32_t n, int32_t m, vector<int32_t> X, vector<int32_t> Y,
					vector<int32_t> W) {
	
	for (int i = 0; i < m; i++) {
		X[i]++; Y[i]++;
	}

	// int olda[n + 1][n + 1];
	// for (int i = 0; i <= n; i++) {
	// 	for (int j = 0; j <= n; j++) {
	// 		olda[i][j] = 0;
	// 	}
	// }
	// for (int i = 0; i < m; i++) {
	// 	olda[X[i]][Y[i]] = W[i];
	// }
	// int oldps[n + 1][n + 1]; // ps[i][j] = a[i][1] + ... + a[i][j]
	// for (int i = 1; i <= n; i++) {
	// 	oldps[i][0] = 0;
	// 	for (int j = 1; j <= n; j++) {
	// 		oldps[i][j] = oldps[i][j - 1] + olda[i][j];
	// 	}
	// }

	vector<pii> a[n + 1], ps[n + 1];
	set<pii> critpts;
	for (int i = 1; i <= n; i++) {
		a[i].pb({0, 0});
		ps[i].pb({0, 0});
		critpts.insert({i, 0});
		critpts.insert({i, n});
	}
	for (int i = 0; i < m; i++) {
		a[X[i]].pb({Y[i], W[i]});
		// critical points: (X[i] +- 1, Y[i]), (X[i], Y[i] - 1)
		if (X[i] > 1) {
			critpts.insert({X[i] - 1, Y[i]});
		}
		if (X[i] < n) {
			critpts.insert({X[i] + 1, Y[i]});
		}
		critpts.insert({X[i], Y[i] - 1});
	}
	for (int i = 1; i <= n; i++) {
		sort(a[i].begin(), a[i].end());
		for (pii &x : a[i]) {
			ps[i].pb({x.ff, ps[i].back().ss + x.ss});
		}
	}

	function<int(int, int)> GetPS = [&](int x, int y) -> int {
		int lb = 0, rb = (int)(ps[x].size()) - 1;
		while (lb < rb) {
			int mid = (lb + rb + 1) >> 1;
			if (ps[x][mid].ff <= y) lb = mid;
			else rb = mid - 1;
		}
		return ps[x][lb].ss;
	};
	
	// int olddp[2][n + 1][n + 1];
	// // olddp[increasing][pos][height] = max ans from 1 to pos with pos getting height, height must be increasing
	// for (int i = 0; i <= n; i++) {
	// 	olddp[0][0][i] = olddp[1][0][i] = (i == 0 ? 0 : -1e18);
	// 	olddp[0][1][i] = olddp[1][1][i] = 0;
	// }
	// int oldcur[n + 1];
	// function<void(void)> resetoldcur = [&]() {
	// 	for (int i = 0; i <= n; i++) oldcur[i] = 0;
	// };

	vector<vector<pii>> dp[2];
	dp[0].resize(n + 1); dp[1].resize(n + 1);
	for (int i = 0; i <= n; i++) {
		dp[0][0].pb({i, (i == 0 ? 0 : -1e18)});
		dp[1][0].pb({i, (i == 0 ? 0 : -1e18)});
		
		dp[0][1].pb({i, 0});
		dp[1][1].pb({i, 0});
	}
	for (pii x : critpts) {
		if (x.ff < 2) continue;
		dp[0][x.ff].pb({x.ss, 0});
		dp[1][x.ff].pb({x.ss, 0});
	}
	vector<pii> cur;
 
	for (int i = 2; i <= n; i++) {
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = olddp[1][i][j] = 0;
		// }
		sort(dp[0][i].begin(), dp[0][i].end());
		sort(dp[1][i].begin(), dp[1][i].end());
		// Case 0: height of i is 0
		// resetoldcur();
		// olddp[0][i][0] = max(olddp[0][i - 1][0], olddp[1][i - 1][0]);
		// for (int j = 1; j <= n; j++) {
		// 	olddp[0][i][0] = max(olddp[0][i][0], max(olddp[0][i - 1][j], olddp[1][i - 1][j]) + oldps[i][j]);
		// }
		// olddp[1][i][0] = olddp[0][i][0];

		{
			// dp[flag][i][0].ff is always 0
			for (int j = 0; j < (int)(dp[0][i - 1].size()); j++) {
				dp[0][i][0].ss = max(dp[0][i][0].ss, max(dp[0][i - 1][j].ss, dp[1][i - 1][j].ss) + GetPS(i, dp[0][i - 1][j].ff));
			}
			dp[1][i][0].ss = dp[0][i][0].ss;
		}
 
		// Case 1: height of i-1 is 0
		// Case 1.1: height of i-2 <= height of i
		// resetoldcur();
		// oldcur[0] = olddp[0][i - 2][0];
		// for (int j = 1; j <= n; j++) {
		// 	oldcur[j] = max(oldcur[j - 1], max(olddp[0][i - 2][j], olddp[1][i - 2][j]));
		// }
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j] + oldps[i - 1][j]);
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j] + oldps[i - 1][j]);
		// }

		{
			cur.clear();
			for (int j = 0; j < (int)(dp[0][i - 2].size()); j++) {
				cur.pb({dp[0][i - 2][j].ff, max(dp[0][i - 2][j].ss, dp[1][i - 2][j].ss)});
			}
			for (int j = 1; j < (int)(cur.size()); j++) {
				cur[j].ss = max(cur[j].ss, cur[j - 1].ss);
			}
			int ptr = 0, curans = 0;
			for (int j = 0; j < (int)(dp[0][i].size()); j++) {
				while (ptr < (int)(cur.size()) && cur[ptr].ff <= dp[0][i][j].ff) {
					curans = max(curans, cur[ptr].ss);
					ptr++;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans + GetPS(i - 1, dp[0][i][j].ff));
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans + GetPS(i - 1, dp[0][i][j].ff));
			}
		}

		// Case 1.2: height of i-2 >= height of i
		// resetoldcur();
		// oldcur[n] = olddp[0][i - 2][n] + oldps[i - 1][n];
		// for (int j = n - 1; j >= 0; j--) {
		// 	oldcur[j] = max(oldcur[j + 1], max(olddp[0][i - 2][j], olddp[1][i - 2][j]) + oldps[i - 1][j]);
		// }
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j]);
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			for (int j = 0; j < (int)(dp[0][i - 2].size()); j++) {
				cur.pb({dp[0][i - 2][j].ff, max(dp[0][i - 2][j].ss, dp[1][i - 2][j].ss) + GetPS(i - 1, dp[0][i - 2][j].ff)});
			}
			for (int j = (int)(cur.size()) - 2; j >= 0; j--) {
				cur[j].ss = max(cur[j].ss, cur[j + 1].ss);
			}
			int ptr = (int)(cur.size()) - 1, curans = 0;
			for (int j = (int)(dp[0][i].size()) - 1; j >= 0; j--) {
				while (ptr >= 0 && cur[ptr].ff >= dp[0][i][j].ff) {
					curans = max(curans, cur[ptr].ss);
					ptr--;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans);
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans);
			}
		}
 
		// now height of i-1 > 0
		// Case 2: height of i-1 <= height of i
		// resetoldcur();
		// oldcur[1] = olddp[0][i - 1][1];
		// for (int j = 2; j <= n; j++) {
		// 	oldcur[j] = max(oldcur[j - 1] + olda[i - 1][j], olddp[0][i - 1][j]);
		// }
		// for (int j = 1; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			int ptr = 1, curans = 0;
			for (int j = 1; j < (int)(dp[0][i].size()); j++) {
				curans += (GetPS(i - 1, dp[0][i][j].ff) - GetPS(i - 1, (j == 1 ? 1 : dp[0][i][j - 1].ff)));
				while (ptr < (int)(dp[0][i - 1].size()) && dp[0][i - 1][ptr].ff <= dp[0][i][j].ff) {
					curans = max(curans, dp[0][i - 1][ptr].ss + (GetPS(i - 1, dp[0][i][j].ff) - GetPS(i - 1, dp[0][i - 1][ptr].ff)));
					ptr++;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans);
			}
		}
 
		// Case 3: height of i-1 >= height of i
		// resetoldcur();
		// oldcur[n] = max(olddp[0][i - 1][n], olddp[1][i - 1][n]);
		// for (int j = n - 1; j >= 1; j--) {
		// 	oldcur[j] = max(oldcur[j + 1] + olda[i][j + 1], max(olddp[0][i - 1][j], olddp[1][i - 1][j]));
		// }
		// for (int j = 1; j <= n; j++) {
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			int ptr = (int)(dp[1][i - 1].size()) - 1, curans = 0;
			for (int j = (int)(dp[1][i].size()) - 1; j >= 1; j--) {
				curans += (GetPS(i, (j + 1 == (int)(dp[1][i].size()) ? n : dp[1][i][j + 1].ff)) - GetPS(i, dp[1][i][j].ff));
				while (ptr >= 0 && dp[1][i - 1][ptr].ff >= dp[0][i][j].ff) {
					curans = max(curans, max(dp[0][i - 1][ptr].ss, dp[1][i - 1][ptr].ss) + (GetPS(i, dp[1][i - 1][ptr].ff) - GetPS(i, dp[1][i][j].ff)));
					ptr--;
				}
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans);
			}
		}
	}
 
	// int ans = max(dp[0][n][0].ss, dp[1][n][0].ss);
	// for (int i = 1; i <= n; i++) {
	// 	// cerr << olddp[0][n][i] << ' ' << olddp[1][n][i] << endl;
	// 	ans = max(ans, max(olddp[0][n][i], olddp[1][n][i]));
	// }
	// return ans;

	// for (int i = 1; i <= n; i++) {
	// 	cerr << i << ": ";
	// 	for (pii &x : dp[1][i]) cerr << "(" << x.ff << ", " << x.ss << ") ";
	// 	cerr << endl;
	// }

	int ans = 0;
	for (pii &x : dp[0][n]) ans = max(ans, x.ss);
	for (pii &x : dp[1][n]) ans = max(ans, x.ss);
	return ans;
}
 
#undef int
# Verdict Execution time Memory Grader output
1 Correct 302 ms 64784 KB Output is correct
2 Correct 349 ms 75284 KB Output is correct
3 Correct 146 ms 51924 KB Output is correct
4 Correct 145 ms 51924 KB Output is correct
5 Execution timed out 1073 ms 165732 KB Time limit exceeded
6 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 553 ms 78164 KB Output is correct
3 Correct 675 ms 92000 KB Output is correct
4 Correct 304 ms 66112 KB Output is correct
5 Correct 337 ms 75280 KB Output is correct
6 Correct 1 ms 340 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 300 KB Output is correct
10 Correct 134 ms 51812 KB Output is correct
11 Correct 147 ms 51828 KB Output is correct
12 Correct 418 ms 73852 KB Output is correct
13 Correct 447 ms 84660 KB Output is correct
14 Correct 354 ms 70288 KB Output is correct
15 Correct 353 ms 70440 KB Output is correct
16 Correct 354 ms 70328 KB Output is correct
17 Correct 377 ms 77296 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 139 ms 51820 KB Output is correct
2 Correct 150 ms 51892 KB Output is correct
3 Correct 237 ms 57280 KB Output is correct
4 Correct 216 ms 58896 KB Output is correct
5 Correct 373 ms 74552 KB Output is correct
6 Correct 369 ms 74572 KB Output is correct
7 Correct 367 ms 74604 KB Output is correct
8 Correct 383 ms 74588 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 224 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 980 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 224 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 980 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 596 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 4 ms 852 KB Output is correct
17 Correct 91 ms 10808 KB Output is correct
18 Correct 88 ms 10956 KB Output is correct
19 Correct 75 ms 10892 KB Output is correct
20 Correct 75 ms 10060 KB Output is correct
21 Correct 83 ms 9928 KB Output is correct
22 Correct 237 ms 19632 KB Output is correct
23 Correct 20 ms 3964 KB Output is correct
24 Correct 63 ms 9136 KB Output is correct
25 Correct 2 ms 820 KB Output is correct
26 Correct 20 ms 3552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 224 KB Output is correct
5 Correct 1 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 980 KB Output is correct
11 Correct 1 ms 468 KB Output is correct
12 Correct 2 ms 724 KB Output is correct
13 Correct 1 ms 340 KB Output is correct
14 Correct 2 ms 596 KB Output is correct
15 Correct 2 ms 468 KB Output is correct
16 Correct 4 ms 852 KB Output is correct
17 Correct 91 ms 10808 KB Output is correct
18 Correct 88 ms 10956 KB Output is correct
19 Correct 75 ms 10892 KB Output is correct
20 Correct 75 ms 10060 KB Output is correct
21 Correct 83 ms 9928 KB Output is correct
22 Correct 237 ms 19632 KB Output is correct
23 Correct 20 ms 3964 KB Output is correct
24 Correct 63 ms 9136 KB Output is correct
25 Correct 2 ms 820 KB Output is correct
26 Correct 20 ms 3552 KB Output is correct
27 Correct 10 ms 2900 KB Output is correct
28 Correct 603 ms 48112 KB Output is correct
29 Correct 980 ms 72960 KB Output is correct
30 Execution timed out 1079 ms 127424 KB Time limit exceeded
31 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 139 ms 51820 KB Output is correct
2 Correct 150 ms 51892 KB Output is correct
3 Correct 237 ms 57280 KB Output is correct
4 Correct 216 ms 58896 KB Output is correct
5 Correct 373 ms 74552 KB Output is correct
6 Correct 369 ms 74572 KB Output is correct
7 Correct 367 ms 74604 KB Output is correct
8 Correct 383 ms 74588 KB Output is correct
9 Correct 425 ms 80828 KB Output is correct
10 Correct 272 ms 44452 KB Output is correct
11 Correct 631 ms 88484 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 0 ms 212 KB Output is correct
18 Correct 138 ms 51920 KB Output is correct
19 Correct 140 ms 51840 KB Output is correct
20 Correct 141 ms 51828 KB Output is correct
21 Correct 141 ms 51928 KB Output is correct
22 Correct 570 ms 91416 KB Output is correct
23 Correct 737 ms 112760 KB Output is correct
24 Correct 763 ms 114552 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 302 ms 64784 KB Output is correct
2 Correct 349 ms 75284 KB Output is correct
3 Correct 146 ms 51924 KB Output is correct
4 Correct 145 ms 51924 KB Output is correct
5 Execution timed out 1073 ms 165732 KB Time limit exceeded
6 Halted 0 ms 0 KB -