Submission #749789

# Submission time Handle Problem Language Result Execution time Memory
749789 2023-05-28T13:42:36 Z happypotato Catfish Farm (IOI22_fish) C++17
9 / 100
610 ms 85652 KB
#include "fish.h"
 
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pii pair<int, int>
#define ff first
#define ss second
#define pb push_back
 
long long max_weights(int32_t n, int32_t m, vector<int32_t> X, vector<int32_t> Y,
					vector<int32_t> W) {
	
	for (int i = 0; i < m; i++) {
		X[i]++; Y[i]++;
	}

	// int olda[n + 1][n + 1];
	// for (int i = 0; i <= n; i++) {
	// 	for (int j = 0; j <= n; j++) {
	// 		olda[i][j] = 0;
	// 	}
	// }
	// for (int i = 0; i < m; i++) {
	// 	olda[X[i]][Y[i]] = W[i];
	// }
	// int oldps[n + 1][n + 1]; // ps[i][j] = a[i][1] + ... + a[i][j]
	// for (int i = 1; i <= n; i++) {
	// 	oldps[i][0] = 0;
	// 	for (int j = 1; j <= n; j++) {
	// 		oldps[i][j] = oldps[i][j - 1] + olda[i][j];
	// 	}
	// }

	vector<pii> a[n + 1], ps[n + 1];
	set<pii> critpts;
	for (int i = 1; i <= n; i++) {
		a[i].pb({0, 0});
		ps[i].pb({0, 0});
		critpts.insert({i, 0});
	}
	for (int i = 0; i < m; i++) {
		a[X[i]].pb({Y[i], W[i]});
		// critical points: (X[i] +- 1, Y[i]), (X[i], Y[i] - 1)
		if (X[i] > 1) {
			critpts.insert({X[i] - 1, Y[i]});
		}
		if (X[i] < n) {
			critpts.insert({X[i] + 1, Y[i]});
		}
		critpts.insert({X[i], Y[i] - 1});
	}
	for (int i = 1; i <= n; i++) {
		sort(a[i].begin(), a[i].end());
		for (pii &x : a[i]) {
			ps[i].pb({x.ff, ps[i].back().ss + x.ss});
		}
	}

	function<int(int, int)> GetPS = [&](int x, int y) -> int {
		int lb = 0, rb = (int)(ps[x].size()) - 1;
		while (lb < rb) {
			int mid = (lb + rb + 1) >> 1;
			if (ps[x][mid].ff <= y) lb = mid;
			else rb = mid - 1;
		}
		return ps[x][lb].ss;
	};
	
	// int olddp[2][n + 1][n + 1];
	// // olddp[increasing][pos][height] = max ans from 1 to pos with pos getting height, height must be increasing
	// for (int i = 0; i <= n; i++) {
	// 	olddp[0][0][i] = olddp[1][0][i] = (i == 0 ? 0 : -1e18);
	// 	olddp[0][1][i] = olddp[1][1][i] = 0;
	// }
	// int oldcur[n + 1];
	// function<void(void)> resetoldcur = [&]() {
	// 	for (int i = 0; i <= n; i++) oldcur[i] = 0;
	// };

	vector<vector<pii>> dp[2];
	dp[0].resize(n + 1); dp[1].resize(n + 1);
	for (int i = 0; i <= n; i++) {
		dp[0][0].pb({i, (i == 0 ? 0 : -1e18)});
		dp[1][0].pb({i, (i == 0 ? 0 : -1e18)});
		
		dp[0][1].pb({i, 0});
		dp[1][1].pb({i, 0});
	}
	for (pii x : critpts) {
		if (x.ff < 2) continue;
		dp[0][x.ff].pb({x.ss, 0});
		dp[1][x.ff].pb({x.ss, 0});
	}
	vector<pii> cur;
 
	for (int i = 2; i <= n; i++) {
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = olddp[1][i][j] = 0;
		// }
		sort(dp[0][i].begin(), dp[0][i].end());
		sort(dp[1][i].begin(), dp[1][i].end());
		// Case 0: height of i is 0
		// resetoldcur();
		// olddp[0][i][0] = max(olddp[0][i - 1][0], olddp[1][i - 1][0]);
		// for (int j = 1; j <= n; j++) {
		// 	olddp[0][i][0] = max(olddp[0][i][0], max(olddp[0][i - 1][j], olddp[1][i - 1][j]) + oldps[i][j]);
		// }
		// olddp[1][i][0] = olddp[0][i][0];

		{
			// dp[flag][i][0].ff is always 0
			for (int j = 0; j < (int)(dp[0][i - 1].size()); j++) {
				dp[0][i][0].ss = max(dp[0][i][0].ss, dp[0][i - 1][j].ss + GetPS(i, dp[0][i - 1][j].ff));
			}
			for (int j = 0; j < (int)(dp[1][i - 1].size()); j++) {
				dp[0][i][0].ss = max(dp[0][i][0].ss, dp[1][i - 1][j].ss + GetPS(i, dp[1][i - 1][j].ff));
			}
			dp[1][i][0].ss = dp[0][i][0].ss;
		}
 
		// Case 1: height of i-1 is 0
		// Case 1.1: height of i-2 <= height of i
		// resetoldcur();
		// oldcur[0] = olddp[0][i - 2][0];
		// for (int j = 1; j <= n; j++) {
		// 	oldcur[j] = max(oldcur[j - 1], max(olddp[0][i - 2][j], olddp[1][i - 2][j]));
		// }
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j] + oldps[i - 1][j]);
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j] + oldps[i - 1][j]);
		// }

		{
			cur.clear();
			for (int j = 0; j < (int)(dp[0][i - 2].size()); j++) {
				cur.pb({dp[0][i - 2][j].ff, max(dp[0][i - 2][j].ss, dp[1][i - 2][j].ss)});
			}
			for (int j = 1; j < (int)(cur.size()); j++) {
				cur[j].ss = max(cur[j].ss, cur[j - 1].ss);
			}
			int ptr = 0, curans = 0;
			for (int j = 0; j < (int)(dp[0][i].size()); j++) {
				while (ptr < (int)(cur.size()) && cur[ptr].ff <= dp[0][i][j].ff) {
					curans = max(curans, cur[ptr].ss);
					ptr++;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans + GetPS(i - 1, j));
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans + GetPS(i - 1, j));
			}
		}

		// Case 1.2: height of i-2 >= height of i
		// resetoldcur();
		// oldcur[n] = olddp[0][i - 2][n] + oldps[i - 1][n];
		// for (int j = n - 1; j >= 0; j--) {
		// 	oldcur[j] = max(oldcur[j + 1], max(olddp[0][i - 2][j], olddp[1][i - 2][j]) + oldps[i - 1][j]);
		// }
		// for (int j = 0; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j]);
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			for (int j = 0; j < (int)(dp[0][i - 2].size()); j++) {
				cur.pb({dp[0][i - 2][j].ff, max(dp[0][i - 2][j].ss, dp[1][i - 2][j].ss) + GetPS(i - 1, dp[0][i - 2][j].ff)});
			}
			for (int j = (int)(cur.size()) - 2; j >= 0; j--) {
				cur[j].ss = max(cur[j].ss, cur[j + 1].ss);
			}
			int ptr = (int)(cur.size()) - 1, curans = 0;
			for (int j = (int)(dp[0][i].size()) - 1; j >= 0; j--) {
				while (ptr >= 0 && cur[ptr].ff >= dp[0][i][j].ff) {
					curans = max(curans, cur[ptr].ss);
					ptr--;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans);
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans);
			}
		}
 
		// now height of i-1 > 0
		// Case 2: height of i-1 <= height of i
		// resetoldcur();
		// oldcur[1] = olddp[0][i - 1][1];
		// for (int j = 2; j <= n; j++) {
		// 	oldcur[j] = max(oldcur[j - 1] + olda[i - 1][j], olddp[0][i - 1][j]);
		// }
		// for (int j = 1; j <= n; j++) {
		// 	olddp[0][i][j] = max(olddp[0][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			int ptr = 1, curans = 0;
			for (int j = 1; j < (int)(dp[0][i].size()); j++) {
				curans += (GetPS(i - 1, dp[0][i][j].ff) - GetPS(i - 1, (j == 1 ? 1 : dp[0][i][j - 1].ff)));
				while (ptr < (int)(dp[0][i - 1].size()) && dp[0][i - 1][ptr].ff <= dp[0][i][j].ff) {
					curans = max(curans, dp[0][i - 1][ptr].ss + (GetPS(i - 1, dp[0][i][j].ff) - GetPS(i - 1, dp[0][i - 1][ptr].ff)));
					ptr++;
				}
				dp[0][i][j].ss = max(dp[0][i][j].ss, curans);
			}
		}
 
		// Case 3: height of i-1 >= height of i
		// resetoldcur();
		// oldcur[n] = max(olddp[0][i - 1][n], olddp[1][i - 1][n]);
		// for (int j = n - 1; j >= 1; j--) {
		// 	oldcur[j] = max(oldcur[j + 1] + olda[i][j + 1], max(olddp[0][i - 1][j], olddp[1][i - 1][j]));
		// }
		// for (int j = 1; j <= n; j++) {
		// 	olddp[1][i][j] = max(olddp[1][i][j], oldcur[j]);
		// }

		{
			cur.clear();
			int ptr = (int)(dp[1][i - 1].size()) - 1, curans = 0;
			for (int j = (int)(dp[1][i].size()) - 1; j >= 1; j--) {
				curans += (GetPS(i, (j + 1 == (int)(dp[1][i].size()) ? n : dp[1][i][j + 1].ff)) - GetPS(i, dp[1][i][j].ff));
				while (ptr >= 0 && dp[1][i - 1][ptr].ff >= dp[0][i][j].ff) {
					curans = max(curans, max(dp[0][i - 1][ptr].ss, dp[1][i - 1][ptr].ss) + (GetPS(i, dp[1][i - 1][ptr].ff) - GetPS(i, dp[1][i][j].ff)));
					ptr--;
				}
				dp[1][i][j].ss = max(dp[1][i][j].ss, curans);
			}
		}
	}
 
	// int ans = max(dp[0][n][0].ss, dp[1][n][0].ss);
	// for (int i = 1; i <= n; i++) {
	// 	// cerr << olddp[0][n][i] << ' ' << olddp[1][n][i] << endl;
	// 	ans = max(ans, max(olddp[0][n][i], olddp[1][n][i]));
	// }
	// return ans;

	// for (int i = 1; i <= n; i++) {
	// 	cerr << i << ": ";
	// 	for (pii &x : dp[1][i]) cerr << "(" << x.ff << ", " << x.ss << ") ";
	// 	cerr << endl;
	// }

	int ans = 0;
	for (pii &x : dp[0][n]) ans = max(ans, x.ss);
	for (pii &x : dp[1][n]) ans = max(ans, x.ss);
	return ans;
}
 
#undef int
# Verdict Execution time Memory Grader output
1 Incorrect 261 ms 53620 KB 1st lines differ - on the 1st token, expected: '40313272768926', found: '40313049006569'
2 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Incorrect 499 ms 66792 KB 1st lines differ - on the 1st token, expected: '40604614618209', found: '40603763492036'
3 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 111 ms 39292 KB Output is correct
2 Correct 104 ms 39336 KB Output is correct
3 Correct 216 ms 45892 KB Output is correct
4 Correct 174 ms 46360 KB Output is correct
5 Correct 335 ms 57372 KB Output is correct
6 Correct 315 ms 57356 KB Output is correct
7 Correct 310 ms 57316 KB Output is correct
8 Correct 334 ms 57332 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 980 KB Output is correct
11 Incorrect 1 ms 468 KB 1st lines differ - on the 1st token, expected: '278622587073', found: '277844721407'
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 980 KB Output is correct
11 Incorrect 1 ms 468 KB 1st lines differ - on the 1st token, expected: '278622587073', found: '277844721407'
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 468 KB Output is correct
10 Correct 3 ms 980 KB Output is correct
11 Incorrect 1 ms 468 KB 1st lines differ - on the 1st token, expected: '278622587073', found: '277844721407'
12 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Correct 111 ms 39292 KB Output is correct
2 Correct 104 ms 39336 KB Output is correct
3 Correct 216 ms 45892 KB Output is correct
4 Correct 174 ms 46360 KB Output is correct
5 Correct 335 ms 57372 KB Output is correct
6 Correct 315 ms 57356 KB Output is correct
7 Correct 310 ms 57316 KB Output is correct
8 Correct 334 ms 57332 KB Output is correct
9 Correct 456 ms 74552 KB Output is correct
10 Correct 275 ms 42920 KB Output is correct
11 Correct 610 ms 85652 KB Output is correct
12 Correct 1 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 292 KB Output is correct
17 Correct 1 ms 280 KB Output is correct
18 Correct 105 ms 39296 KB Output is correct
19 Correct 101 ms 39416 KB Output is correct
20 Correct 100 ms 39280 KB Output is correct
21 Correct 107 ms 39316 KB Output is correct
22 Incorrect 484 ms 82240 KB 1st lines differ - on the 1st token, expected: '45561826463480', found: '45495595974114'
23 Halted 0 ms 0 KB -
# Verdict Execution time Memory Grader output
1 Incorrect 261 ms 53620 KB 1st lines differ - on the 1st token, expected: '40313272768926', found: '40313049006569'
2 Halted 0 ms 0 KB -