Submission #745193

# Submission time Handle Problem Language Result Execution time Memory
745193 2023-05-19T14:30:25 Z MrBrionix Candies (JOI18_candies) C++17
8 / 100
2259 ms 24608 KB
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
using namespace std;

using i32 = std::int32_t;
using i64 = std::int64_t;
using u32 = std::uint32_t;
using u64 = std::uint64_t;
using isize = std::ptrdiff_t;
using usize = std::size_t;

const int MAXN = 200'005;
const long long INF = 1'000'000'000'000'015;

template <class Select>
std::vector<usize> smawk(const usize row_size, const usize col_size,
  const Select &select) {
  using vec_zu = std::vector<usize>;
  
  const std::function<vec_zu(const vec_zu &, const vec_zu &)> solve =
  [&](const vec_zu &row, const vec_zu &col) -> vec_zu {
    const usize n = row.size();
    if (n == 0)
      return {};
    vec_zu c2;
    for (const usize i : col) {
      while (!c2.empty() && select(row[c2.size() - 1], c2.back(), i))
        c2.pop_back();
      if (c2.size() < n)
        c2.push_back(i);
    }
    vec_zu r2;
    for (usize i = 1; i < n; i += 2)
      r2.push_back(row[i]);
    const vec_zu a2 = solve(r2, c2);
    vec_zu ans(n);
    for (usize i = 0; i != a2.size(); i += 1)
      ans[i * 2 + 1] = a2[i];
    usize j = 0;
    for (usize i = 0; i < n; i += 2) {
      ans[i] = c2[j];
      const usize end = i + 1 == n ? c2.back() : ans[i + 1];
      while (c2[j] != end) {
        j += 1;
        if (select(row[i], ans[i], c2[j]))
          ans[i] = c2[j];
      }
    }
    return ans;
  };
  vec_zu row(row_size);
  std::iota(row.begin(), row.end(), 0);
  vec_zu col(col_size);
  std::iota(col.begin(), col.end(), 0);
  return solve(row, col);
}

template<class T>
vector<T> MaxConvolutionWithConvexShape(vector<T> anyShape, 
  const vector<T> &convexShape) {
  
  if((int) convexShape.size() <= 1) return anyShape;
  if(anyShape.empty()) anyShape.push_back(0);
  int n = (int)anyShape.size(), m = (int)convexShape.size();
  auto function = [&](int i, int j) {
    //if(i-j<0 || i-j>=m) return -LLONG_MAX/3ll;
    //if(j<0 || j>=n) return -LLONG_MAX/3ll;
    return anyShape[j] + convexShape[i-j];
  };
  auto comparator = [&](int i, int j, int k) {
    if(i < k) return false;
    if(i - j >= m) return true;
    return function(i, j) <= function(i, k);
  };
  const vector<usize> best = smawk(n + m - 1 , n, comparator);
  vector<T> ans(n + m - 1);
  for(int i = 0; i < n + m - 1; i++)
    ans[i] = function(i, best[i]);
  return ans;
} //$\mathit{ans}_i=\max_{j+k=i}(A_j+B_k)$


int n,r;
long long a[MAXN];
struct dp{
  vector<long long> mat[2][2];
  
  dp(){}
  
  dp(int n){
    mat[0][0]=vector<long long>(n+1,LLONG_MIN);
    mat[0][1]=vector<long long>(n+1,LLONG_MIN);
    mat[1][0]=vector<long long>(n+1,LLONG_MIN);
    mat[1][1]=vector<long long>(n+1,LLONG_MIN);
  }
  
  dp(vector<long long> a,vector<long long>b,vector<long long>c,vector<long long>d){
    mat[0][0]=a;
    mat[0][1]=b;
    mat[1][0]=c;
    mat[1][1]=d;
  }
};

dp f(int l,int r){
  if(l+1==r){
    return dp({0,-INF},{-INF,-INF},{-INF,-INF},{-INF,a[l]});
  }
  
  if(l+2==r){
    return dp({0,-INF,-2ll*INF-1ll},{-INF,a[l+1],-INF},{-INF,a[l],-INF},{-3ll*INF-3ll,-2*INF-1ll,-INF});
  }
  
  dp res(r-l),le,ri;
  
  if((r-l)%2 == 1){
    le = f(l,(l+r)/2+1);
    ri = f((l+r)/2,r);
  }else{
    le = f(l,(l+r)/2);
    ri = f((l+r)/2-1,r);
  }
  
  for(int i=0;i<2;i++){
    for(int j=0;j<2;j++){
      for(int k=0;k<2;k++){
        auto tmp = MaxConvolutionWithConvexShape(le.mat[i][k],ri.mat[k][j]);
        for(int ll=0;ll<=r-l;ll++){
          res.mat[i][j][ll] = max(res.mat[i][j][ll],tmp[ll+k]-k*a[(r-l)%2 == 1 ? (l+r)/2 : (l+r)/2-1]);
        }
      }
    }
  }
  
  return res;
}

void solve(){
  cin>>n;
  //cin>>r;
  //n = 90'000;
  for(int i=0;i<n;i++){
    cin>>a[i];
    //a[i]=10;
  }
  
  auto tmp = f(0,n);
  
  for(int i=1;i<=(n+1)/2;i++)
    cout<<max({tmp.mat[0][0][i],tmp.mat[0][1][i],tmp.mat[1][0][i],tmp.mat[1][1][i]})<<"\n";
}

signed main(){
  //ios::sync_with_stdio(false);
  //cin.tie(0);
  
  int t=1;
  //cin>>t;
  for(int i=1;i<=t;i++)solve();
  
  return 0;
}
# Verdict Execution time Memory Grader output
1 Correct 18 ms 596 KB Output is correct
2 Correct 20 ms 524 KB Output is correct
3 Correct 19 ms 544 KB Output is correct
4 Correct 19 ms 596 KB Output is correct
5 Correct 18 ms 576 KB Output is correct
6 Correct 19 ms 608 KB Output is correct
7 Correct 19 ms 508 KB Output is correct
8 Correct 19 ms 596 KB Output is correct
9 Correct 19 ms 588 KB Output is correct
10 Correct 18 ms 540 KB Output is correct
11 Correct 19 ms 564 KB Output is correct
12 Correct 20 ms 552 KB Output is correct
13 Correct 20 ms 556 KB Output is correct
14 Correct 19 ms 596 KB Output is correct
15 Correct 19 ms 544 KB Output is correct
16 Correct 18 ms 596 KB Output is correct
17 Correct 19 ms 588 KB Output is correct
18 Correct 19 ms 596 KB Output is correct
19 Correct 18 ms 596 KB Output is correct
20 Correct 18 ms 596 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 18 ms 596 KB Output is correct
2 Correct 20 ms 524 KB Output is correct
3 Correct 19 ms 544 KB Output is correct
4 Correct 19 ms 596 KB Output is correct
5 Correct 18 ms 576 KB Output is correct
6 Correct 19 ms 608 KB Output is correct
7 Correct 19 ms 508 KB Output is correct
8 Correct 19 ms 596 KB Output is correct
9 Correct 19 ms 588 KB Output is correct
10 Correct 18 ms 540 KB Output is correct
11 Correct 19 ms 564 KB Output is correct
12 Correct 20 ms 552 KB Output is correct
13 Correct 20 ms 556 KB Output is correct
14 Correct 19 ms 596 KB Output is correct
15 Correct 19 ms 544 KB Output is correct
16 Correct 18 ms 596 KB Output is correct
17 Correct 19 ms 588 KB Output is correct
18 Correct 19 ms 596 KB Output is correct
19 Correct 18 ms 596 KB Output is correct
20 Correct 18 ms 596 KB Output is correct
21 Incorrect 2259 ms 24608 KB Output isn't correct
22 Halted 0 ms 0 KB -