This submission is migrated from previous version of oj.uz, which used different machine for grading. This submission may have different result if resubmitted.
#pragma GCC optimize("Ofast")
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 200'005;
const long long INF = 1'000'000'000'000'015;
template<class F>
vector<int> smawck(F f, const vector<int> &rows,
const vector<int> &cols) {
vector<int> ans(rows.size(), -1);
if((int) max(rows.size(), cols.size()) <= 2) {
for(int i = 0; i < (int) rows.size(); i++) {
for(auto j : cols) {
if(ans[i] == -1 || f(rows[i], ans[i], j))
ans[i] = j;
}
}
} else if(rows.size() < cols.size()) { // reduce
vector<int> st;
for(int j : cols) {
while(1) {
if(st.empty()) {
st.push_back(j);
break;
}else if(f(rows[(int)st.size()-1], st.back(), j)){
st.pop_back();
} else if(st.size() < rows.size()) {
st.push_back(j);
break;
} else {
break;
}
}
}
ans = smawck(f, rows, st);
} else {
vector<int> newRows;
for(int i = 1; i < (int) rows.size(); i += 2) {
newRows.push_back(rows[i]);
}
auto otherAns = smawck(f, newRows, cols);
for(int i = 0; i < (int) newRows.size(); i++) {
ans[2*i+1] = otherAns[i];
}
for(int i = 0, l = 0, r = 0; i < (int)rows.size();i+=2){
while(l && cols[l-1] >= ans[i-1]) l--;
if(i+1 == (int) rows.size()) r = (int) cols.size();
while(r < (int) cols.size() && r <= ans[i+1]) r++;
ans[i] = cols[l++];
for(; l < r; l++) {
if(f(rows[i], ans[i], cols[l]))
ans[i] = cols[l];
}
l--;
}
}
return ans;
}
/* F(i, j, k) checks if M[i][j] $\leq$ M[i][k]
* another interpretations is: F(i, j, k) checks if
* M[i][k] is at least as good as M[i][j] (higher == better)
* when comparing 2 columns as vectors for j < k,
*column j can start better than column k. as soon as column
* k is at least as good, it's always at least as good */
template<class F>
vector<int> smawck(F f, int n, int m) {
vector<int> rows(n), cols(m);
for(int i = 0; i < n; i++) rows[i] = i;
for(int i = 0; i < m; i++) cols[i] = i;
return smawck(f, rows, cols);
}
template<class T>
vector<T> MaxConvolutionWithConvexShape(vector<T> anyShape,
const vector<T> &convexShape) {
if((int) convexShape.size() <= 1) return anyShape;
if(anyShape.empty()) anyShape.push_back(0);
int n = (int)anyShape.size(), m = (int)convexShape.size();
auto function = [&](int i, int j) {
return anyShape[j] + convexShape[i-j];
};
auto comparator = [&](int i, int j, int k) {
if(i < k) return false;
if(i - j >= m) return true;
return function(i, j) <= function(i, k);
};
const vector<int> best = smawck(comparator, n + m - 1, n);
vector<T> ans(n + m - 1);
for(int i = 0; i < n + m - 1; i++)
ans[i] = function(i, best[i]);
return ans;
} //$\mathit{ans}_i=\max_{j+k=i}(A_j+B_k)$
int n,r;
long long a[MAXN];
struct dp{
vector<long long> mat[2][2];
dp(){}
dp(int n){
mat[0][0]=vector<long long>(n+1,LLONG_MIN);
mat[0][1]=vector<long long>(n+1,LLONG_MIN);
mat[1][0]=vector<long long>(n+1,LLONG_MIN);
mat[1][1]=vector<long long>(n+1,LLONG_MIN);
}
dp(vector<long long> a,vector<long long>b,vector<long long>c,vector<long long>d){
mat[0][0]=a;
mat[0][1]=b;
mat[1][0]=c;
mat[1][1]=d;
}
};
dp f(int l,int r){
if(l+1==r){
return dp({0,-INF},{-INF,-INF},{-INF,-INF},{-INF,a[l]});
}
if(l+2==r){
return dp({0,-INF,-2ll*INF-1ll},{-INF,a[l+1],-INF},{-INF,a[l],-INF},{-3ll*INF-3ll,-2*INF-1ll,-INF});
}
dp res(r-l),le,ri;
if((r-l)%2 == 1){
le = f(l,(l+r)/2+1);
ri = f((l+r)/2,r);
}else{
le = f(l,(l+r)/2);
ri = f((l+r)/2-1,r);
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
for(int k=0;k<2;k++){
auto tmp = MaxConvolutionWithConvexShape(le.mat[i][k],ri.mat[k][j]);
for(int ll=0;ll<=r-l;ll++){
res.mat[i][j][ll] = max(res.mat[i][j][ll],tmp[ll+k]-k*a[(r-l)%2 == 1 ? (l+r)/2 : (l+r)/2-1]);
}
}
}
}
return res;
}
void solve(){
cin>>n;
//cin>>r;
for(int i=0;i<n;i++){
cin>>a[i];
}
auto tmp = f(0,n);
for(int i=1;i<=(n+1)/2;i++)
cout<<max({tmp.mat[0][0][i],tmp.mat[0][1][i],tmp.mat[1][0][i],tmp.mat[1][1][i]})<<"\n";
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
int t=1;
//cin>>t;
for(int i=1;i<=t;i++)solve();
return 0;
}
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |
# | Verdict | Execution time | Memory | Grader output |
---|
Fetching results... |