Submission #743146

# Submission time Handle Problem Language Result Execution time Memory
743146 2023-05-17T08:20:44 Z maomao90 Nicelines (RMI20_nicelines) C++17
82.0192 / 100
95 ms 948 KB
#include <bits/stdc++.h>
#include "nice_lines.h"
using namespace std;

#define REP(i, j, k) for (int i = j; i < k; i++)
#define RREP(i, j, k) for (int i = j; i >= k; i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<ll> vll;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if(0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 100;
const int MAXA = 10000;
const ld EPS = 1e-12;
const ld STEP = 1e-5;

struct Point {
    long double x, y;
    Point();
    Point(long double x, long double y);
    Point operator-() const;
    Point& operator+=(const Point &p);
    Point& operator-=(const Point &p);
    Point operator+(const Point &p) const;
    Point operator-(const Point &p) const;
    Point operator* (long double k) const;
    long double dot(const Point &p) const;
};
struct Line {
    Point off, dir;
    Line(int a, int b);
    long double dist(Point p);
};
Point::Point(): x(0), y(0) {}
Point::Point(long double x, long double y): x(x), y(y) {}
Point Point::operator-() const{
    return Point(-x, -y);
}
Point& Point::operator+=(const Point &p) {
    x += p.x;
    y += p.y;
    return *this;
}
Point& Point::operator-=(const Point &p) {
    return *this += (-p);
}
Point Point::operator+(const Point &p) const {
    Point res = *this;
    return res += p;
}
Point Point::operator-(const Point &p) const {
    Point res = *this;
    return res -= p;
}
long double Point::dot(const Point &p) const {
    return x * p.x + y * p.y;
}
Point Point::operator* (long double k) const {
    return Point(x * k, y * k);
}

Line::Line(int a, int b) {
    off = Point(0, b);
    dir = Point(1, a);
}
long double Line::dist(Point p) {
    p -= off;
    Point delta = dir * (p.dot(dir) / dir.dot(dir)) - p;
    return sqrt(delta.dot(delta));
}

ld mp0[MAXA * 4 + 5];
ld query0(int x) {
    if (mp0[x + MAXA] != LINF) {
        return mp0[x + MAXA];
    }
    return mp0[x + MAXA] = query(0, x);
}

int fib[MAXA];
void solve(int subtask_id, int n) {
    REP (i, 0, MAXA * 4 + 5) {
        mp0[i] = LINF;
    }
    vi va, vb;
    vector<Line> vl;
    int blo = -MAXA, bhi = MAXA;
    if (subtask_id == 4) {
        blo = -500, bhi = 500;
    }
    fib[0] = 1; fib[1] = 2;
    int gd = -1;
    REP (i, 2, MAXA) {
        fib[i] = fib[i - 1] + fib[i - 2];
        if (blo + fib[i] >= bhi) {
            bhi = blo + fib[i];
            gd = i;
            break;
        }
    }
    REP (i, 0, n) {
        int lo = blo, hi = bhi;
        RREP (k, gd, 2) {
        //while (hi - lo >= 3) {
            //int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            int mid1 = lo + fib[k - 2], mid2 = lo + fib[k - 1];
            ld q1 = query0(mid1), q2 = query0(mid2);
            cerr << mid1 << ": " << q1 << '\n';
            cerr << ' ' << mid2 << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(0, mid1));
                q2 -= l.dist(Point(0, mid2));
            }
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int b = INF;
        ld mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query0(i);
            for (Line l : vl) {
                q -= l.dist(Point(0, i));
            }
            if (mnto(mn, q)) {
                b = i;
            }
        }
        //assert(b != INF);
        lo = -MAXA, hi = MAXA;
        if (subtask_id == 4) {
            lo = -500, hi = 500;
        }
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(STEP, mid1 * STEP + b), q2 = query(STEP, mid2 * STEP + b);
            //cerr << mid1 << ' ' << mid1 * STEP + b << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ' ' << mid2 * STEP + b << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(STEP, mid1 * STEP + b));
                q2 -= l.dist(Point(STEP, mid2 * STEP + b));
            }
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int a = INF;
        mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(STEP, i * STEP + b);
            for (Line l : vl) {
                q -= l.dist(Point(STEP, i * STEP + b));
            }
            if (mnto(mn, q)) {
                a = i;
            }
        }
        //assert(a != INF);
        va.pb(a); vb.pb(b);
        vl.pb(Line(a, b));
    }
    the_lines_are(va, vb);
}
# Verdict Execution time Memory Grader output
1 Correct 2 ms 936 KB Output is correct
2 Correct 2 ms 848 KB Output is correct
3 Correct 2 ms 848 KB Output is correct
4 Correct 2 ms 848 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 848 KB Output is correct
2 Correct 3 ms 848 KB Output is correct
3 Correct 3 ms 848 KB Output is correct
4 Correct 2 ms 848 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 4 ms 848 KB Output is correct
2 Correct 3 ms 848 KB Output is correct
3 Correct 4 ms 848 KB Output is correct
4 Correct 5 ms 848 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 66 ms 932 KB Output is partially correct
2 Partially correct 76 ms 928 KB Output is partially correct
3 Partially correct 67 ms 848 KB Output is partially correct
4 Partially correct 72 ms 848 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 28 ms 948 KB Output is partially correct
2 Partially correct 27 ms 848 KB Output is partially correct
3 Partially correct 28 ms 848 KB Output is partially correct
4 Partially correct 24 ms 848 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 66 ms 932 KB Output is partially correct
2 Partially correct 76 ms 928 KB Output is partially correct
3 Partially correct 67 ms 848 KB Output is partially correct
4 Partially correct 72 ms 848 KB Output is partially correct
5 Partially correct 28 ms 948 KB Output is partially correct
6 Partially correct 27 ms 848 KB Output is partially correct
7 Partially correct 28 ms 848 KB Output is partially correct
8 Partially correct 24 ms 848 KB Output is partially correct
9 Partially correct 94 ms 932 KB Output is partially correct
10 Partially correct 95 ms 848 KB Output is partially correct
11 Partially correct 89 ms 940 KB Output is partially correct
12 Partially correct 86 ms 924 KB Output is partially correct