Submission #743009

# Submission time Handle Problem Language Result Execution time Memory
743009 2023-05-17T07:22:15 Z maomao90 Nicelines (RMI20_nicelines) C++17
64.7638 / 100
178 ms 424 KB
#include <bits/stdc++.h>
#include "nice_lines.h"
using namespace std;

#define REP(i, j, k) for (int i = j; i < k; i++)
#define RREP(i, j, k) for (int i = j; i >= k; i--)

template <class T>
inline bool mnto(T &a, const T b) {return a > b ? a = b, 1 : 0;}
template <class T>
inline bool mxto(T &a, const T b) {return a < b ? a = b, 1 : 0;}

typedef long long ll;
typedef long double ld;
#define FI first
#define SE second
typedef pair<int, int> ii;
typedef pair<ll, ll> pll;
#define ALL(x) x.begin(), x.end()
#define SZ(x) (int) x.size()
#define pb push_back
typedef vector<int> vi;
typedef vector<ii> vii;
typedef vector<ll> vll;
typedef tuple<int, int, int> iii;
typedef vector<iii> viii;

#ifndef DEBUG
#define cerr if(0) cerr
#endif

const int INF = 1000000005;
const ll LINF = 1000000000000000005;
const int MAXN = 100;
const int MAXA = 10000;
const ld EPS = 1e-12;
const ld STEP = 1e-5;

struct Point {
    long double x, y;
    Point();
    Point(long double x, long double y);
    Point operator-() const;
    Point& operator+=(const Point &p);
    Point& operator-=(const Point &p);
    Point operator+(const Point &p) const;
    Point operator-(const Point &p) const;
    Point operator* (long double k) const;
    long double dot(const Point &p) const;
};
struct Line {
    Point off, dir;
    Line(int a, int b);
    long double dist(Point p);
};
Point::Point(): x(0), y(0) {}
Point::Point(long double x, long double y): x(x), y(y) {}
Point Point::operator-() const{
    return Point(-x, -y);
}
Point& Point::operator+=(const Point &p) {
    x += p.x;
    y += p.y;
    return *this;
}
Point& Point::operator-=(const Point &p) {
    return *this += (-p);
}
Point Point::operator+(const Point &p) const {
    Point res = *this;
    return res += p;
}
Point Point::operator-(const Point &p) const {
    Point res = *this;
    return res -= p;
}
long double Point::dot(const Point &p) const {
    return x * p.x + y * p.y;
}
Point Point::operator* (long double k) const {
    return Point(x * k, y * k);
}

Line::Line(int a, int b) {
    off = Point(0, b);
    dir = Point(1, a);
}
long double Line::dist(Point p) {
    p -= off;
    Point delta = dir * (p.dot(dir) / dir.dot(dir)) - p;
    return sqrt(delta.dot(delta));
}

void solve(int subtask_id, int n) {
    vi va, vb;
    vector<Line> vl;
    REP (i, 0, n) {
        int lo = -MAXA, hi = MAXA;
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(0, mid1), q2 = query(0, mid2);
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(0, mid1));
                q2 -= l.dist(Point(0, mid2));
            }
            //cerr << mid1 << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ": " << q2 << '\n';
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int b = INF;
        ld mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(0, i);
            for (Line l : vl) {
                q -= l.dist(Point(0, i));
            }
            if (mnto(mn, q)) {
                b = i;
            }
        }
        assert(b != INF);
        lo = -MAXA, hi = MAXA;
        while (hi - lo >= 3) {
            int mid1 = lo + (hi - lo) / 3, mid2 = lo + (hi - lo) / 3 * 2;
            ld q1 = query(STEP, mid1 * STEP + b), q2 = query(STEP, mid2 * STEP + b);
            //cerr << mid1 << ' ' << mid1 * STEP + b << ": " << q1 << '\n';
            //cerr << ' ' << mid2 << ' ' << mid2 * STEP + b << ": " << q2 << '\n';
            for (Line l : vl) {
                q1 -= l.dist(Point(STEP, mid1 * STEP + b));
                q2 -= l.dist(Point(STEP, mid2 * STEP + b));
            }
            if (q1 < q2) {
                hi = mid2;
            } else {
                lo = mid1;
            }
        }
        int a = INF;
        mn = LINF;
        REP (i, lo, hi + 1) {
            ld q = query(STEP, i * STEP + b);
            for (Line l : vl) {
                q -= l.dist(Point(STEP, i * STEP + b));
            }
            if (mnto(mn, q)) {
                a = i;
            }
        }
        assert(a != INF);
        va.pb(a); vb.pb(b);
        vl.pb(Line(a, b));
    }
    the_lines_are(va, vb);
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 208 KB Output is correct
2 Correct 1 ms 208 KB Output is correct
3 Correct 1 ms 208 KB Output is correct
4 Correct 2 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 3 ms 208 KB Output is correct
2 Correct 3 ms 208 KB Output is correct
3 Correct 3 ms 208 KB Output is correct
4 Correct 4 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 5 ms 208 KB Output is correct
2 Correct 4 ms 300 KB Output is correct
3 Correct 3 ms 208 KB Output is correct
4 Correct 4 ms 208 KB Output is correct
# Verdict Execution time Memory Grader output
1 Partially correct 178 ms 300 KB Output is partially correct
2 Partially correct 152 ms 316 KB Output is partially correct
3 Partially correct 121 ms 424 KB Output is partially correct
4 Partially correct 117 ms 420 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 41 ms 288 KB Output is partially correct
2 Partially correct 45 ms 312 KB Output is partially correct
3 Partially correct 36 ms 312 KB Output is partially correct
4 Partially correct 43 ms 304 KB Output is partially correct
# Verdict Execution time Memory Grader output
1 Partially correct 178 ms 300 KB Output is partially correct
2 Partially correct 152 ms 316 KB Output is partially correct
3 Partially correct 121 ms 424 KB Output is partially correct
4 Partially correct 117 ms 420 KB Output is partially correct
5 Partially correct 41 ms 288 KB Output is partially correct
6 Partially correct 45 ms 312 KB Output is partially correct
7 Partially correct 36 ms 312 KB Output is partially correct
8 Partially correct 43 ms 304 KB Output is partially correct
9 Partially correct 149 ms 300 KB Output is partially correct
10 Partially correct 118 ms 308 KB Output is partially correct
11 Partially correct 129 ms 308 KB Output is partially correct
12 Partially correct 138 ms 300 KB Output is partially correct