Submission #739312

# Submission time Handle Problem Language Result Execution time Memory
739312 2023-05-10T10:13:42 Z fractlpaca Horses (IOI15_horses) C++17
100 / 100
1071 ms 56064 KB
#include "horses.h"
#include <vector>
#include <algorithm>

#define v vector
#define ll long long

#define MOD ((ll) 1000000007)
#define INF ((ll) 1000000001)

using namespace std;

int *x;
int *y;
int n;


// Subtask 1

// int solve() {
// 	int ma = 0;
// 	int pop = 1;
// 	for(int i=0; i<n; i++) {
// 		pop*=x[i];
// 		ma = max(ma, pop*y[i]);
// 	}
// 	return ma%MOD;
// }

// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	x = X;
//  	y = Y;
// 	return solve();
// }

// int updateX(int pos, int val) {
// 	x[pos] = val;
// 	return solve();
// }

// int updateY(int pos, int val) {
// 	y[pos] = val;
// 	return solve();
// }


//Subtask 2

// int solve() {
// 	int max_i = n-1;
// 	ll pop = x[n-1];
// 	for(int i=n-2; i>=0; i--) {
// 		if (y[i] > y[max_i]*pop) {
// 			max_i = i;
// 			pop=1;
// 		}
// 		pop = min(pop*x[i], INF);
// 	}
 
// 	pop=1;
// 	for(int i=0; i<=max_i; i++){
// 		pop = (pop*x[i])%MOD;
// 	}
// 	return (int) (pop*y[max_i])%MOD;
// }
 
// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	x = X;
// 	y = Y;

// 	return solve();
// }
 
// int updateX(int pos, int val) {
// 	x[pos] = val;
// 	return solve();
// }
 
// int updateY(int pos, int val) {
// 	y[pos] = val;
// 	return solve();
// }


// Subtask 3

// v<ll> xs_mults;

// ll query_xs(int L, int R, int l, int r, int index) {
// 	if (r<L || l>R) return 1;
// 	if (l>=L and r<=R) return xs_mults[index];
// 	int mid = (l+r)/2;
// 	ll subl = query_xs(L, R, l, mid, index*2);
// 	ll subr = query_xs(L, R, mid+1, r, index*2+1);
// 	return (subl*subr)%MOD;
// }

// void update_xs(int pos, int value, int l, int r, int index) {
// 	int mid = (l+r)/2;
// 	if (l==r){
// 		xs_mults[index] = value;
// 		return;
// 	}
// 	if (pos <= mid){
// 		update_xs(pos, value, l, mid, index*2);
// 	} else {
// 		update_xs(pos, value, mid+1, r, index*2+1);
// 	}
// 	xs_mults[index] = (xs_mults[index*2]*xs_mults[index*2+1])%MOD;
// }

// int solve() {
// 	int max_i = n-1;
// 	ll pop = x[n-1];
// 	for(int i=n-2; i>=0 && i>=n-30; i--) {
// 		if (y[i] > y[max_i]*pop) {
// 			max_i = i;
// 			pop=1;
// 		}
// 		pop = min(pop*x[i], INF);
// 	}
// 	ll mult = query_xs(0, max_i, 0, n-1, 1);
// 	return (int) ((mult*y[max_i])%MOD);
// }

// int init(int N, int X[], int Y[]) {
// 	n = N;
// 	x = X;
// 	y = Y;
// 	xs_mults = v<ll> (4*n, 1);
// 	for(int i=0; i<n; i++) {
// 		update_xs(i, x[i], 0, n-1, 1);
// 	}
// 	return solve();
// }

// int updateX(int pos, int val) {
// 	x[pos] = val;
// 	update_xs(pos, val, 0, n-1, 1);
// 	return solve();
// }

// int updateY(int pos, int val) {
// 	y[pos] = val;
// 	return solve();
// }

// Subtask 4

v<ll> xs_mod;
v<ll> xs_trunc;
v<int> ys_max;

ll query_xs_mod(int L, int R, int l, int r, int index) {
	if (r<L || l>R) return 1;
	if (l>=L and r<=R) return xs_mod[index];
	int mid = (l+r)/2;
	ll subl = query_xs_mod(L, R, l, mid, index*2);
	ll subr = query_xs_mod(L, R, mid+1, r, index*2+1);
	return (subl*subr)%MOD;
}

void update_xs_mod(int pos, int value, int l, int r, int index) {
	if (l==r) {
		xs_mod[index] = value;
		return;
	}
	int mid = (l+r)/2;
	if (pos <= mid){
		update_xs_mod(pos, value, l, mid, index*2);
	} else {
		update_xs_mod(pos, value, mid+1, r, index*2+1);
	}
	xs_mod[index] = (xs_mod[index*2]*xs_mod[index*2+1])%MOD;
}

ll query_xs_trunc(int L, int R, int l, int r, int index) {
	if (r<L || l>R) return 1;
	if (l>=L and r<=R) return xs_trunc[index];
	int mid = (l+r)/2;
	ll subl = query_xs_trunc(L, R, l, mid, index*2);
	ll subr = query_xs_trunc(L, R, mid+1, r, index*2+1);
	return min(INF, subl*subr);
}

void update_xs_trunc(int pos, int value, int l, int r, int index) {
	if (l==r) {
		xs_trunc[index] = value;
		return;
	}
	int mid = (l+r)/2;
	if (pos <= mid){
		update_xs_trunc(pos, value, l, mid, index*2);
	} else {
		update_xs_trunc(pos, value, mid+1, r, index*2+1);
	}
	xs_trunc[index] = min(INF, xs_trunc[index*2]*xs_trunc[index*2+1]);
}

int query_ys_max(int L, int R, int l, int r, int index) {
	if (r<L || l>R) return -1;
	if (l>=L and r<=R) return ys_max[index];
	int mid = (l+r)/2;
	int subl = query_ys_max(L, R, l, mid, index*2);
	int subr = query_ys_max(L, R, mid+1, r, index*2+1);
	if (subl == -1) return subr;
	if (subr == -1) return subl;
	if (y[subl] > y[subr]) return subl;
	return subr;
}

void update_ys_max(int pos, int value, int l, int r, int index) {
	if (l==r) {
		y[pos] = value;
		ys_max[index] = pos;
		return;
	}
	int mid = (l+r)/2;
	if (pos <= mid){
		update_ys_max(pos, value, l, mid, index*2);
	} else {
		update_ys_max(pos, value, mid+1, r, index*2+1);
	}
	int subl = ys_max[index*2];
	int subr = ys_max[index*2+1];
	int ans = 0;
	if (subl == -1) ans = subr;
	else if (subr == -1) ans = subl;
	else if (y[subl] > y[subr]) ans = subl;
	else ans = subr;
	ys_max[index] = ans;
}

int solve() {
	int max_i = query_ys_max(0, n-1, 0, n-1, 1);
	int cur = max_i;
	while (cur<n-1) {
		cur = query_ys_max(cur+1, n-1, 0, n-1, 1);
		ll pop = query_xs_trunc(max_i+1, cur, 0, n-1, 1);
		if (y[cur]*pop > y[max_i]) {
			max_i = cur;
		}
	}
	ll pop = query_xs_mod(0, max_i, 0, n-1, 1);
	return (int) ((pop*y[max_i])%MOD);
}

int init(int N, int X[], int Y[]) {
	n = N;
	y = Y;

	xs_trunc = v<ll> (4*n, 1);
	xs_mod = v<ll> (4*n, 1);
	ys_max = v<int> (4*n, 0);

	for (int i=0; i<n; i++) {
		update_xs_mod(i, X[i], 0, n-1, 1);
		update_xs_trunc(i, X[i], 0, n-1, 1);
		update_ys_max(i, Y[i], 0, n-1, 1);
	}
	return solve();
}

int updateX(int pos, int val) {
	update_xs_mod(pos, val, 0, n-1, 1);
	update_xs_trunc(pos, val, 0, n-1, 1);
	return solve();
}

int updateY(int pos, int val) {
	update_ys_max(pos, val, 0, n-1, 1);
	return solve();
}
# Verdict Execution time Memory Grader output
1 Correct 1 ms 340 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 288 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 1 ms 288 KB Output is correct
13 Correct 0 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 0 ms 212 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 1 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 1 ms 288 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 1 ms 212 KB Output is correct
8 Correct 0 ms 288 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 0 ms 288 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 288 KB Output is correct
16 Correct 0 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 1 ms 212 KB Output is correct
21 Correct 0 ms 212 KB Output is correct
22 Correct 0 ms 212 KB Output is correct
23 Correct 4 ms 340 KB Output is correct
24 Correct 2 ms 340 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 296 KB Output is correct
27 Correct 2 ms 340 KB Output is correct
28 Correct 3 ms 340 KB Output is correct
29 Correct 1 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 2 ms 300 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 355 ms 44664 KB Output is correct
2 Correct 353 ms 44636 KB Output is correct
3 Correct 574 ms 44724 KB Output is correct
4 Correct 694 ms 44428 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 0 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 280 KB Output is correct
6 Correct 1 ms 212 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 1 ms 212 KB Output is correct
9 Correct 0 ms 212 KB Output is correct
10 Correct 1 ms 212 KB Output is correct
11 Correct 1 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 1 ms 212 KB Output is correct
15 Correct 1 ms 212 KB Output is correct
16 Correct 1 ms 212 KB Output is correct
17 Correct 1 ms 212 KB Output is correct
18 Correct 1 ms 212 KB Output is correct
19 Correct 0 ms 212 KB Output is correct
20 Correct 0 ms 212 KB Output is correct
21 Correct 0 ms 212 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 3 ms 340 KB Output is correct
24 Correct 2 ms 292 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 340 KB Output is correct
27 Correct 2 ms 340 KB Output is correct
28 Correct 3 ms 296 KB Output is correct
29 Correct 1 ms 340 KB Output is correct
30 Correct 1 ms 340 KB Output is correct
31 Correct 1 ms 296 KB Output is correct
32 Correct 1 ms 340 KB Output is correct
33 Correct 329 ms 47328 KB Output is correct
34 Correct 281 ms 47360 KB Output is correct
35 Correct 305 ms 54200 KB Output is correct
36 Correct 292 ms 54176 KB Output is correct
37 Correct 282 ms 45552 KB Output is correct
38 Correct 274 ms 46356 KB Output is correct
39 Correct 260 ms 45396 KB Output is correct
40 Correct 272 ms 49376 KB Output is correct
41 Correct 258 ms 45412 KB Output is correct
42 Correct 263 ms 45552 KB Output is correct
43 Correct 267 ms 49688 KB Output is correct
44 Correct 275 ms 49612 KB Output is correct
# Verdict Execution time Memory Grader output
1 Correct 1 ms 212 KB Output is correct
2 Correct 0 ms 212 KB Output is correct
3 Correct 0 ms 212 KB Output is correct
4 Correct 0 ms 212 KB Output is correct
5 Correct 0 ms 212 KB Output is correct
6 Correct 0 ms 288 KB Output is correct
7 Correct 0 ms 212 KB Output is correct
8 Correct 0 ms 212 KB Output is correct
9 Correct 1 ms 212 KB Output is correct
10 Correct 1 ms 284 KB Output is correct
11 Correct 0 ms 212 KB Output is correct
12 Correct 0 ms 212 KB Output is correct
13 Correct 1 ms 212 KB Output is correct
14 Correct 0 ms 212 KB Output is correct
15 Correct 0 ms 292 KB Output is correct
16 Correct 1 ms 284 KB Output is correct
17 Correct 0 ms 280 KB Output is correct
18 Correct 0 ms 212 KB Output is correct
19 Correct 1 ms 212 KB Output is correct
20 Correct 0 ms 288 KB Output is correct
21 Correct 0 ms 212 KB Output is correct
22 Correct 1 ms 212 KB Output is correct
23 Correct 3 ms 340 KB Output is correct
24 Correct 2 ms 392 KB Output is correct
25 Correct 1 ms 340 KB Output is correct
26 Correct 1 ms 324 KB Output is correct
27 Correct 3 ms 340 KB Output is correct
28 Correct 3 ms 340 KB Output is correct
29 Correct 1 ms 340 KB Output is correct
30 Correct 2 ms 340 KB Output is correct
31 Correct 1 ms 340 KB Output is correct
32 Correct 1 ms 296 KB Output is correct
33 Correct 355 ms 48124 KB Output is correct
34 Correct 370 ms 55944 KB Output is correct
35 Correct 570 ms 48068 KB Output is correct
36 Correct 702 ms 52032 KB Output is correct
37 Correct 328 ms 47532 KB Output is correct
38 Correct 277 ms 47308 KB Output is correct
39 Correct 302 ms 54220 KB Output is correct
40 Correct 295 ms 54144 KB Output is correct
41 Correct 284 ms 45544 KB Output is correct
42 Correct 299 ms 46356 KB Output is correct
43 Correct 266 ms 45392 KB Output is correct
44 Correct 276 ms 49248 KB Output is correct
45 Correct 263 ms 45476 KB Output is correct
46 Correct 258 ms 45420 KB Output is correct
47 Correct 303 ms 49712 KB Output is correct
48 Correct 311 ms 49716 KB Output is correct
49 Correct 1071 ms 49360 KB Output is correct
50 Correct 497 ms 49324 KB Output is correct
51 Correct 430 ms 56064 KB Output is correct
52 Correct 379 ms 55552 KB Output is correct
53 Correct 749 ms 47712 KB Output is correct
54 Correct 498 ms 48188 KB Output is correct
55 Correct 341 ms 46404 KB Output is correct
56 Correct 359 ms 51136 KB Output is correct
57 Correct 379 ms 47052 KB Output is correct
58 Correct 370 ms 47604 KB Output is correct
59 Correct 293 ms 49716 KB Output is correct