Submission #729766

#TimeUsernameProblemLanguageResultExecution timeMemory
729766Sig0001Rabbit Carrot (LMIO19_triusis)C++17
100 / 100
29 ms5180 KiB
#include <bits/stdc++.h> using namespace std; using ll = int64_t; int main() { ios::sync_with_stdio(false); cin.tie(nullptr); int n, m; cin >> n >> m; vector<int> a(n); for (int &x: a) cin >> x; /** * Follows https://usaco.guide/problems/lmio-2019triusis/solution * * We count the number of poles we don't change * Suppose the poles i1, i2, ..., ik don't change * Condition 1. a[i_j] <= M * i_j * Condition 2. a[i_{j+1}] <= a[i_j] + M * (i_{j+1} - i_j) * * Hence, we have a[i_{j+1}] - M * i_{j+1} <= a[i_j] - M * i_j * or M * i_{j+1} - a[i_{j+1}] <= M * i_j - a[i_j] * * Now, if b[i] = M * i - a[i], we can find the largest non-decreasing * sequence of b[i_j] for i_j in {i1, i2, ..., ik} * where the the indices satisfy condition 1 (b[i] >= 0) */ vector<ll> lis; for (ll i = 0, x; i < n; i++) { x = 1LL * m * (i + 1) - a[i]; // b[i] if (x < 0) continue; if (lis.empty() or x >= lis.back()) lis.push_back(x); else *lower_bound(lis.begin(), lis.end(), x + 1) = x; } cout << n - lis.size() << endl; }
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...
#Verdict Execution timeMemoryGrader output
Fetching results...